V. 2004 303(d) List, Assessment Categories, and TMDL Schedule

While Chapter IV provides a comprehensive look at Arizona's water quality assessment, it is primarily useful for looking up information on specific waters. However, it would take a good deal of time to find in Chapter IV just how many waters are assessed as "impaired," or to find just those waters that are assessed as "attaining all uses." This chapter provides a summary of the state's water quality assessment to the public and to EPA, beginning with statewide assessment maps for streams and lakes.

The Five Category Assessment List – Surface waters assessed in 2004 are organized by Category in Tables 25 through 29.

- Category 1 Surface waters assessed as "attaining all uses." All designated uses are assessed as "attaining."
- Category 2 Surface waters assessed as "attaining some uses." Each designated use is assessed as either "attaining," "inconclusive," or "threatened."
- Category 3 Surface waters assessed as "inconclusive." All designated uses are assessed as "inconclusive" due to insufficient data to assess any designated use (e.g., insufficient samples or core parameters). By default, this category would include waters that were "not assessed" for similar reasons. (See note below.)
- Category 4 Surface waters assessed as "not attaining." At least one designated use was assessed as "not attaining" and no uses were assessed as "impaired." A Total Maximum Daily Load (TMDL) analysis will not be required at this time for one of the following reasons:
 - **4 A.** A TMDL has already been completed and approved by EPA but the water quality standards are not yet attained;
 - **4 B.** Other pollution control requirements are reasonably expected to result in the attainment of water quality standards by the next regularly scheduled listing cycle; or
 - **4 C.** The impairment is <u>not</u> related to a "pollutant" loading but rather due to "pollution" (e.g., hydrologic modification).
- **Category 5** Surface waters assessed as "impaired." At least one designated use was assessed as "impaired" by a pollutant. These waters

must be prioritized for TMDL development (Table 31 at the end of this chapter).

The five part list assists the state in identifying monitoring needs. For example, Category 1 waters will be monitored as part of the rotating watershed cycle as

Category 5 - 303(d) List

The 303(d) List identifies, by surface water segment, the pollutants or surface water characteristics not meeting surface water quality standards. The 303(d) List is a list of all impaired waters that require more than existing technology and permit controls to achieve or maintain surface water quality standards. EPA must approve this list and has the authority to add or remove surface waters from the list based on the federal Clean Water Act, regulations, or policies.

The objective is to systematically identify impaired surface waters and the pollutant(s) causing the impairment and ultimately establish a scientifically-based strategy (a TMDL) for restoring the surface water quality.

The status of TMDLs in progress or completed are highlighted in Chapter VIII. TMDL investigations have been initiated or completed on many of the surface waters on the 2002 303(d) List.

resources allow; while Category 2, 3, and 4 waters are placed on the Planning List and targeted for further monitoring over the next two watershed cycles. Category 5 waters are placed on the 303(d) List and scheduled for monitoring to support development of a TMDL.

Based on monitoring and assessments, a surface water can move from one category to another. The objective is to eventually have all surface waters attaining uses.

Note that many surface waters in Arizona could not be assessed because water quality data or information was not collected during the monitoring period covered by this assessment. By default, all of these waters would be included in Category 3. These waters are not specifically named in this report, except for those placed on the Planning List in 2002. Once placed on the Planning List, these waters remain on the Planning List and appear in Category 3 until sufficient data are collected to make a complete assessment of all uses. Most surface waters lacking monitoring data are ephemeral or only flow for a short time, making it difficult to collect sufficient water quality data. As discussed in Chapter VIII, ADEQ's Ambient Monitoring Program is attempting to monitor and assess all perennial waters.

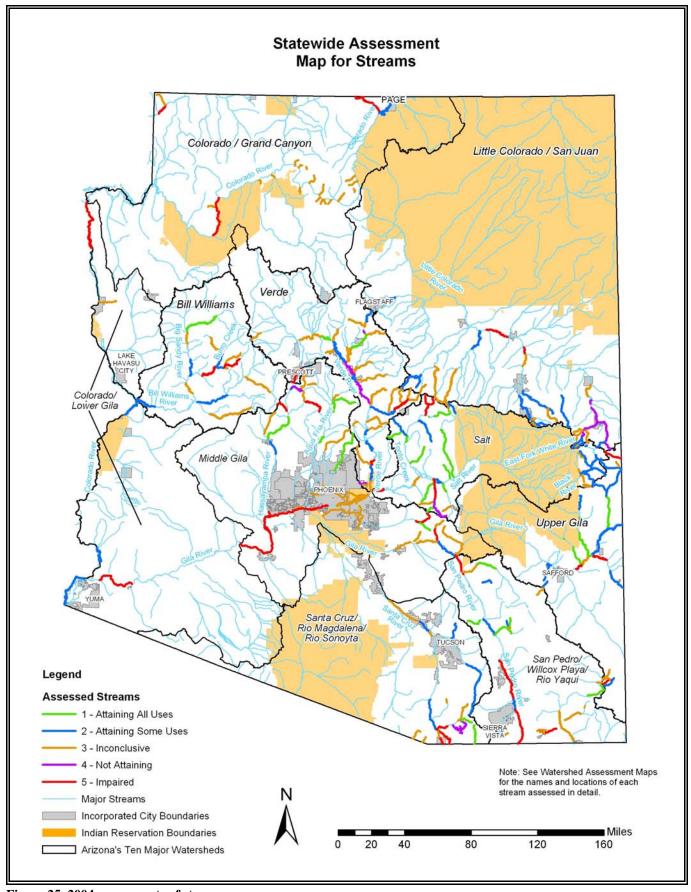


Figure 25. 2004 assessments of streams

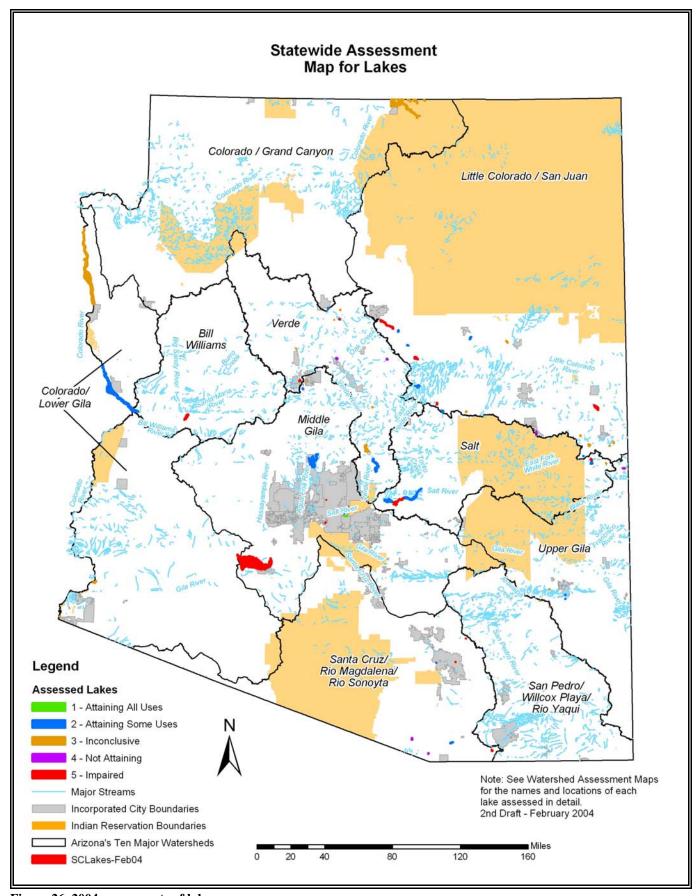


Figure 26. 2004 assessments of lakes

Assessment Categories and Planning List

Table 25. Category 5 – Impaired Waters 2004 303(d) List

At Least One Designated Use Assessed as "Impaired" TMDL development is required for these waters.

Surface Water	Reach or Lake Number	On the 2004 303(d) List Pollutants or Parameters of Concern		0	ther Pollutants or Parameters of Concern Requiring Further Monitoring
Bill Williams Watershed					
Alamo Lake	AZL15030204-0040	Yes:	Mercury in fish tissue (EPA*), pH (high), adding ammonia	Yes:	Missing core parameters
Boulder Creek unnamed wash at 34 41 14 / 113 03 34 - Wilder Creek	AZ15030202-006B	Yes:	Adding mercury (EPA*)	Yes:	Copper, zinc, missing core parameters
Boulder Creek Wilder Creek - Copper Creek	AZ15030202-005A	Yes:	s: Adding mercury (EPA*) (Restricted to segment from Wilder - Butte Creek)		Selenium, TMDL follow-up monitoring for arsenic, copper, zinc (Copper, zinc impairments restricted to segment from Wilder - Butte Creek)
Burro Creek Boulder Creek - Black Canyon	AZ15030202-004	Yes:	Adding mercury (EPA*)	No	
Coors Lake	AZL15030204-5000	Yes:	Adding mercury in fish tissue (EPA*)	Yes:	Insufficient monitoring
Colorado - Grand Canyon Watershed					
Colorado River Parashant Canyon - Diamond Creek	AZ15010002-003	Yes:	Adding selenium, adding suspended sediment concentration	Yes:	Turbidity, missing core parameters
Paria River Utah border - Colorado River	AZ14070007-123	Yes:	Adding suspended sediment concentration		Turbidity, missing core parameters
Virgin River Beaver Dam Wash - Big Bend Wash	AZ15010010-003	Yes:	Adding selenium, add suspended sediment concentration	Yes:	Turbidity, missing core parameters
Colorado - Lower Gila Watershed					
Colorado River Hoover Dam - Lake Mohave	AZ15030101-015	Yes:	Adding selenium	Yes:	Missing core parameters
Gila River Coyote Wash - Fortuna Wash	AZ15070201-003	Yes:	Adding boron, adding selenium	No	
Painted Rock Borrow Pit Lake	AZL15070201-1010	Yes: DDT metabolites, toxaphene and chlordane in fish tissue (EPA*), dissolved oxygen		Yes:	Ammonia, pH (high), missing core parameters
Little Colorado - San Juan Watershed					
Bear Canyon Lake	AZL15020008-0130	Yes:	Adding pH (low) (EPA*)	Yes:	Dissolved oxygen, selenium, missing core parameters

Surface Water	Reach or Lake Number		On the 2004 303(d) List Pollutants or Parameters of Concern		ther Pollutants or Parameters of Concern Requiring Further Monitoring
Lake Mary (lower)	AZL15020015-0890	Yes:	Mercury in fish tissue (EPA*)	Yes:	Insufficient monitoring
Lake Mary (upper)	AZL15020015-0900	Yes:	Mercury in fish tissue (EPA*)	Yes:	Turbidity, insufficient monitoring
Little Colorado River Silver Creek - Carr Wash	AZ15020002-004	Yes:	Adding <i>Escherichia coli</i> Adding sediment (EPA*)	Yes:	Lead
Little Colorado River Porter Tank Draw - McDonalds Wash	AZ15020008-017	Yes:	Copper, silver, suspended sediment concentration	Yes:	Missing core parameters
Long Lake (lower)	AZL15020008-0820	Yes:	Adding mercury in fish tissue (EPA*)	Yes:	Insufficient seasonal coverage, missing core parameters
Lyman Lake	AZL15020001-0850	Yes:	Adding mercury in fish tissue (EPA*)	Yes	Insufficient monitoring
Soldiers Annex Lake	AZL15020008-1430	Yes:	Adding mercury in fish tissue (EPA*)	Yes:	Insufficient monitoring
Soldiers Lake	AZL15020008-1440	Yes:	Adding mercury in fish tissue (EPA*)	Yes:	Insufficient monitoring
Middle Gila Watershed					
Alvord Park Lake	AZL15060106B-0050	Yes:	Adding ammonia	Yes:	Escherichia coli, missing core parameters
Chaparral Lake	AZL15060106B-0300	Yes:	Adding dissolved oxygen, adding Escherichia coli	Yes:	Missing core parameters
Cortez Park Lake	AZL15060106B-0410	Yes:	Adding dissolved oxygen, adding pH (high)	Yes:	Fish kill (1999), missing core parameters
French Gulch headwaters - Hassayampa River	AZ15070103-239	Yes:	Copper, zinc, adding cadmium	Yes:	Missing core parameters
Gila River Salt River - Agua Fria River	AZ15070101-015	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	No	
Gila River Agua Fria River - Waterman Wash	AZ15070101-014	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	Yes:	Insufficient monitoring
Gila River Waterman Wash - Hassayampa River	AZ15070101-010	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	Yes:	Insufficient monitoring
Gila River Hassayampa River - Centennial Wash	AZ15070101-009	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	Yes:	Insufficient monitoring
Gila River Centennial Wash - Gillespie Dam	AZ15070101-008	Yes:	DDT metabolites, toxaphene, and chlordane in fish tissue (EPA*), boron, adding selenium	Yes:	Turbidity/suspended sediment concentration
Gila River Gillespie Dam - Rainbow Wash	AZ15070101-007	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	Yes:	Insufficient monitoring
Gila River Rainbow Wash - Sand Tank	AZ15070101-005	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	Yes:	Insufficient monitoring
Gila River Sand Tank - Painted Rocks Reservoir	AZ15070101-001	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	Yes:	Insufficient monitoring

Surface Water	Reach or Lake Number		On the 2004 303(d) List Pollutants or Parameters of Concern		her Pollutants or Parameters of Concern Requiring Further Monitoring
Hassayampa River Buckeye Canal - Gila River	AZ15070103-001B	Yes:	Yes: DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)		Turbidity/suspended sediment concentration
Mineral Creek Devils Canyon - Gila River	AZ15050100-012B	Yes:	Copper, adding selenium	Yes:	Turbidity/suspended sediment concentration, missing core parameters
Painted Rocks Reservoir	AZL15070101-1020A	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	Yes:	Insufficient monitoring
Queen Creek headwaters - Superior Mine WWTP	AZ15050100-014A	Yes:	Copper	Yes:	Missing core parameters
Queen Creek Superior Mine WWTP - Potts Canyon	AZ15050100-014B	Yes:	Adding copper	Yes:	Selenium, missing core parameters
Salt River 23 rd Ave WWTP - Gila River	AZ15060106B-001D	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	No	
Turkey Creek unnamed tributary at 34 19 28 / 112 21 28 - Poland Creek	AZ15070102-036B	Yes:	Cadmium, copper, zinc, adding lead	Yes:	Arsenic, missing core parameters
Salt River Watershed					
Canyon Lake	AZL15060106A-0250	Yes:	Adding dissolved oxygen	Yes:	Ammonia and missing core parameters
Crescent Lake	AZL15060101-0420	Yes:	pH (high, EPA*)	Yes:	Total nitrogen, fish kill (in 1998), missing core parameters
Pinto Creek Ripper Spring - Roosevelt Lake	AZ15060103-018C	Yes:	Adding selenium, adding copper	No	
Salt River Stewart Mountain Dam - Verde River	AZ15060106A-003	Yes:	Adding dissolved oxygen, adding copper	Yes:	Escherichia coli
Tonto Creek headwaters - unnamed tributary at 34 18 10 / 111 04 14	AZ15060105-013A	Yes:	Adding dissolved oxygen, nitrogen (EPA*)	Yes:	Turbidity/suspended sediment concentration, Escherichia coli
Tonto Creek unnamed tributary at 34 18 10 / 111 04 14 - Haigler Creek	AZ15060105-013B	Yes:	Adding nitrogen (EPA*)	Yes:	Turbidity/suspended sediment concentration, Escherichia coli
San Pedro - Willcox Playa - Rio Yaqui Waters	hed	•		•	
Brewery Gulch Wildcat Canyon - Mule Gulch	AZ15080301-337	Yes:	Adding copper (EPA*)	Yes:	рН
Mule Gulch headwaters - above Lavender Pit	AZ15080301-090A	Yes:	Copper	Yes:	Missing core parameters.
Mule Gulch above Lavender Pit - Bisbee WWTP	AZ15080301-090B	Yes:	Copper, pH (low, EPA*)	Yes:	Lead, missing core parameters

Surface Water	Reach or Lake Number		On the 2004 303(d) List Pollutants or Parameters of Concern	Ot	her Pollutants or Parameters of Concern Requiring Further Monitoring
Mule Gulch Bisbee WWTP - Highway 80 Bridge	AZ15080301-090C	Yes:	Yes: Copper, zinc, pH (low), adding cadmium		Lead, missing core parameters
San Pedro River Mexico border - Charleston	AZ15050202-008	Yes:	Copper	Yes:	Selenium
San Pedro River Babocomari Creek - Dragoon Wash	AZ15050202-003	Yes:	Adding Escherichia coli	No	
San Pedro River Dragoon Wash - Tres Alamos Wash	AZ15050202-002	Yes:	Nitrate	Yes:	Fecal coliform/Escherichia coli, suspended sediment concentration /turbidity, missing core parameters
San Pedro River Aravaipa Creek - Gila River	AZ15050203-001	Yes:	Adding Escherichia coli, adding selenium	Yes:	Mercury
Santa Cruz - Rio Magdalena - Rio Sonoyta					
Lakeside Lake	AZL15050302-0760	Yes:	Adding dissolved oxygen, adding ammonia Adding nitrogen, phosphorus, chlorophyll (EPA*)	Yes:	Turbidity, missing core parameters
Nogales and East Nogales washes Mexico border - Potrero Creek	AZ15050301-011	Yes:	Chlorine, adding Escherichia coli, adding ammonia, adding copper	Yes:	Turbidity/suspended sediment concentration
Parker Canyon Lake	AZL15050301-1040	Yes:	Adding mercury in fish tissue (EPA*)	Yes:	Missing core parameters
Rose Canyon Lake	AZL15050302-1260	Yes:	Adding pH (high and low) (EPA*)	Yes:	Turbidity, missing core parameters
Santa Cruz River Mexico border - Nogales WWTP	AZ15050301-010	Yes:	Escherichia coli	No	
Sonoita Creek 750 feet below WWTP - Santa Cruz River	AZ15050301-013C	Yes:	Adding zinc	Yes:	Copper, dissolved oxygen
Upper Gila Watershed					
Cave Creek headwaters - South Fork of Cave Creek	AZ15040006-852A	Yes:	Adding selenium	No	
Gila River Skully Creek - San Francisco River	AZ15040002-001	Yes:	Adding selenium	Yes:	Dissolved oxygen, lead
Gila River Bonita Creek - Yuma Wash	AZ15040005-022	Yes:	Adding <i>Escherichia coli</i> Adding sediment (EPA*)	Yes:	Copper, lead
San Francisco River headwaters - New Mexico border	AZ15040004-023	Yes:	Adding sediment (EPA*)	No	
Verde Watershed		-		-	
East Verde River Ellison Creek - American Gulch	AZ15060203-022B	Yes:	Adding selenium	No	
Granite Creek headwaters - Willow Creek	AZ15060202-059A	Yes:	Adding dissolved oxygen (EPA*)	Yes:	Escherichia coli, mercury, turbidity/suspended sediment concentration, missing core parameters

Surface Water	Reach or Lake Number	On the 2004 303(d) List Pollutants or Parameters of Concern				Ot	her Pollutants or Parameters of Concern Requiring Further Monitoring
Verde River Bartlett Dam - Camp Creek	AZ15060203-004	Yes: Adding selenium, copper N		No			
Watson Lake	AZL15060202-1590	Yes:	Yes: Adding dissolved oxygen, pH (high), nitrogen (EPA*)		Fish kill, missing core parameters		
Whitehorse Lake	AZL15060202-1630	Yes:	Dissolved oxygen (EPA*)	Yes:	Ammonia, turbidity, fish kill in 1999, missing core parameters		

^{*} Indicates that EPA placed the pollutant or parameter on the 2002 or 2004 303(d) List, rather than ADEQ.

Table 26. Category 4 – Not Attaining (Impaired) Waters

At Least One Designated Use Assessed as "Not Attaining" All Waters are On the Planning List for Follow Up Monitoring

4A = A TMDL has been approved by EPA but designated uses are not yet "attaining."

4B = Other pollution control requirements are expected to result in the attainment of water quality standards by the next regularly scheduled listing cycle (2 years currently).

4C = The impairment is not related to a "pollutant" loading, but caused by pollution (e.g., hydrologic modifications).

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern					
Bill Williams Watershed (no Category 4 waters)								
Colorado - Grand Canyon Watershed (no Category 4 waters)								
Colorado - Lower Gila Watershed (no Category 4 waters)	Colorado - Lower Gila Watershed (no Category 4 waters)							
Little Colorado - San Juan Watershed								
Little Colorado River West Fork of the Little Colorado River - Water Canyon Creek	AZ15020001-011	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved for adjacent reaches in 2002) Missing core parameters					
Little Colorado River Water Canyon Creek - Nutrioso Creek	AZ15020001-010	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved in 2002) Insufficient monitoring					
Little Colorado River Nutrioso Creek - Carnero Wash	AZ15020001-009	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved in 2002) Escherichia coli					
Little Colorado River unnamed reach (15020001-021) to Lyman Lake	AZ15020001-005	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved for adjacent reaches in 2002) Escherichia coli					
Nutrioso Creek headwaters - Picnic Creek	AZ15020001-017	Yes 4A:	Turbidity/suspended sediment concentration (turbidity TMDL approved in 2000)					
Nutrioso Creek Picnic Creek - Little Colorado River	AZ15020001-015	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved in 2000) Insufficient monitoring					
Rainbow Lake	AZL15020005-1170	Yes 4A: Other:	Nutrients and pH (TMDLs approved in 2000) Missing core parameters					
Middle Gila Watershed								
Cash Mine Creek headwaters - Hassayampa River	AZ15070103-349	Yes 4A: Other:	Copper, zinc (metals loadings addressed in Hassayampa TMDLs approved in 2002) Insufficient monitoring					
Cash Mine Creek, <u>unnamed tributary of</u> headwaters - Cash Mine Creek	AZ15070103-415	Yes 4A: Other:	Cadmium, copper, zinc (loadings addressed in Hassayampa TMDLs approved in 2002) Lead, insufficient monitoring					
Hassayampa River headwaters - Copper Creek	AZ15070103-007A	Yes 4A: Other:	Cadmium, copper, zinc, and pH (TMDLs approved in 2002) Missing core parameters					
Salt River Watershed								

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern
Christopher Creek headwaters - Tonto Creek	AZ15060105-353	Yes 4a: Escherichia coli (TMDL approved in 2004) Other: Turbidity/suspended sediment concentration
Gibson Mine tributary headwaters - Pinto Creek	AZ15060103-887	Yes 4A: Copper (loading addressed in Pinto Creek copper TMDL approved in 2001) Other: pH (low), zinc, missing core parameters
Pinto Creek headwaters - tributary at 33 19 27/ 110 54 56	AZ15060103-018A	Yes 4A: Copper (TMDL approved in 2001) Other: Insufficient monitoring
Pinto Creek tributary at 33 19 27 / 110 54 56 - Ripper Spring	AZ15060103-018B	Yes 4A: Copper (TMDL approved in 2001) Other: Selenium, zinc, missing core parameters
San Pedro - Willcox Playa - Rio Yaqui Watershed (no Category 4	waters)	
Santa Cruz - Rio Magdalena - Rio Sonoyta		
Alum Gulch headwaters - 31 28 20 / 110 43 51	AZ15050301-561A	Yes 4A: Cadmium, copper, pH (low), zinc (TMDLs approved in 2003) Other: Missing core parameter
Alum Gulch 31 28 20 / 110 43 51 - 31 29 17/ 110 44 25	AZ15050301-561B	Yes 4A: Cadmium, copper, pH (low), zinc (TMDLs approved in 2003) Other: Missing core parameters
Arivaca Lake	AZL15050304-0080	Yes 4A: Mercury in fish tissue (TMDL approved in 1999) Other: Dissolved oxygen, pH (high), selenium, fish kill in 1999, missing core parameters
Cox Gulch headwaters - 3R Canyon	AZ15050301-560	Yes 4A: Cadmium, copper, zinc, and pH (low) (loadings included in 3R Canyon TMDLs approved in 2003) Other: Missing core parameters
Cox Gulch, <u>unnamed tributary of</u> headwaters - Cox Gulch	AZ15050301-877	Yes 4A: Cadmium, copper, zinc, and pH (low) (loadings included in 3R Canyon TMDLs approved in 2003) Other: Insufficient monitoring
Harshaw Creek headwaters - Sonoita Creek	AZ15050301-025	Yes 4A: Copper and pH (low) (TMDLs approved in 2003) Other: Missing core parameter
Harshaw Creek, <u>unnamed tributary of</u> (Endless Chain Mine tributary) headwaters - Harshaw Creek	AZ15050301-888	Yes 4A: Copper and pH (low) (loadings included in TMDLs for Harshaw Creek approved in 2003)
Humbolt Canyon headwaters - Alum Gulch	AZ15050301-340	Yes 4A: Cadmium, copper, zinc, and pH (low) (TMDLs for Alum Gulch approved in 2003) Other: Missing core parameters
Pena Blanca Lake	AZL15050301-1070	Yes 4A: Mercury in fish tissue (TMDL approved in 1999) Other: pH (low), selenium, turbidity, missing core parameters
Three R Canyon headwaters - 31 28 35 / 110 46 19	AZ15050301-558A	Yes 4A: Cadmium, copper, zinc, and pH (low) (TMDLs approved in 2003) Other: Insufficient monitoring
Three R Canyon 31 28 35 / 110 46 19 - 31 28 27/ 110 47 12	AZ15050301-558B	Yes 4A: Cadmium, copper, zinc, and pH (low) (TMDLs approved in 2003) Other: Missing core parameters
Three R Canyon 31 28 27 / 110 47 12 - Sonoita Creek	AZ15050301-558C	Yes 4A: Copper and pH (low) (TMDLs approved in 2003) Other: Missing core parameter
Three R Canyon, <u>unnamed tributary of</u> headwaters - Three R Canyon	AZ15050301-889	Yes 4A: Cadmium, copper, zinc, and pH (low) (loadings for this tributary included in the TMDLs for 3R Canyon approved in 2003) Other: Insufficient monitoring

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern
Upper Gila Watershed			
Luna Lake	AZL15040004-0840	Yes 4A: Other:	Dissolved oxygen, pH (high), and a fish kill in 1999 (Nutrient TMDL approved in 2000. TMDL addressed low dissolved oxygen, high pH, and fish kills.) Missing core parameters
Verde Watershed			
Grande Wash headwaters - Ashbrook Wash	AZ15060203-991	Yes 4B: Other:	Escherichia coli (Fountain Hills WWTP has now changed disposal method to recharge, thereby eliminating discharges to this wash. E. coli levels are expected to meet water quality standards for the next assessment.) Missing core parameters
Oak Creek At Slide Rock State Park	AZ15060202-018B	Yes 4A: Other:	Escherichia coli and swimming closures (TMDL approved in 1999) Missing core parameters
Pecks Lake	AZL15060202-1060	Yes 4A: Other:	Dissolved oxygen (nutrient TMDL approved in 2000 addressed low dissolved oxygen.) Missing core parameters
Stoneman Lake	AZL15060202-1490	Yes 4A: Other:	pH (high) (nutrient TMDL approved in 2000 addressed high pH.) Arsenic, missing core parameters
Verde River Oak Creek - Beaver Creek	AZ15060202-015	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved in 2002) Insufficient monitoring
Verde River Beaver Creek - HUC boundary 15060203	AZ15060202-001	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved in 2002) Insufficient monitoring
Verde River West Clear Creek - Fossil Creek	AZ15060203-025	Yes 4A: Other:	Turbidity/suspended sediment concentration (turbidity TMDL approved in 2002 in adjacent reaches) Selenium

Table 27. Category 3 -- Inconclusive Waters

All Designated Uses Assessed as "Inconclusive" All Waters are On the Planning List for Follow Up Monitoring

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern
Bill Williams Watershed		
Big Sandy River Deluge Wash - Tule Wash	AZ15030201-011	Yes: Turbidity/Suspended sediment concentration, missing core parameters
Big Sandy River Rupley Wash - Alamo Lake North	AZ15030201-001	Yes: Dissolved oxygen, missing core parameters
Butte Creek headwaters - Boulder Creek	AZ15030202-163	Yes: Mercury, selenium, missing core parameters
Date Creek Cottonwood Creek - unnamed tributary (15030203-008)	AZ15030203-003	Yes: Insufficient monitoring
Francis Creek headwaters - Burro Creek	AZ15030202-012	Yes: Turbidity/Suspended sediment concentration, insufficient monitoring
Kirkland Creek Skull Valley - Santa Maria River	AZ15030203-015	Yes: Escherichia coli, insufficient monitoring
Wilder Creek headwaters - Boulder Creek	AZ15030202-007	Yes: Missing core parameters
Colorado - Grand Canyon Watershed		
Beaver Dam Wash Utah border - Virgin River	AZ15010010-009	Yes: Insufficient monitoring
Boucher Creek California Wash - Colorado River	AZ15010002-017	Yes: Insufficient monitoring
Chuar (Lava) Creek tributary at 36 11 36 / 111 52 17 - Lava Creek	AZ15010001-024B	Yes: Insufficient monitoring
Clear Creek tributary at 36 09 12 / 111 58 25 - Colorado River	AZ15010001-025B	Yes: Insufficient monitoring
Crystal Creek tributary at 36 13 42 / 112 11 48 - Colorado River	AZ15010002-018B	Yes: Insufficient monitoring
Deer Creek tributary at 36 26 16 / 112 28 15.5 - Colorado River	AZ15010002-019B	Yes: Insufficient monitoring
Garden Creek headwaters - Pipe Creek	AZ15010002-841	Yes: Insufficient monitoring
Havasu Canyon Creek Havasupai Indian Reservation - Colorado River	AZ15010004-001	Yes: Turbidity/suspended sediment concentration, insufficient monitoring

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern
Hermit Creek Hermit Pack Trail crossing - Colorado River	AZ15010002-020B	Yes: Insufficient monitoring
Kwagunt Creek tributary at 36 13 29 / 111 55 24 - Colorado River	AZ15010001-031B	Yes: Insufficient monitoring
Lake Powell	AZL14070006-1130	Yes: Escherichia coli, missing core parameters
Monument Creek headwaters - Colorado River	AZ15010002-845	Yes: Insufficient monitoring
Nankoweap Creek tributary at 36 15 30 / 111 15 22 - Colorado River	AZ15010001-033B	Yes: Insufficient monitoring
National Canyon Creek headwaters - Colorado River	AZ15010002-016	Yes: Insufficient monitoring
Royal Arch Creek headwaters - Colorado River	AZ15010002-871	Yes: Insufficient monitoring
Saddle Canyon Creek tributary at 36 21 35.5 / 112 22 46 - Colorado River	AZ15010002-703B	Yes: Insufficient monitoring
Shinumo Creek tributary at 36 18 21 / 112 18 03 - Colorado River	AZ15010002-029B	Yes: Insufficient monitoring
Spring Canyon Creek headwaters - Colorado River	AZ15010002-318	Yes: Insufficient monitoring
Tapeats Creek headwaters - Colorado River	AZ15010002-696	Yes: Insufficient monitoring
Three Springs Creek headwaters - Colorado River	AZ15010002-1180	Yes: Insufficient monitoring
Vasey's Paradise (Spring) at Colorado River	AZ15010001-SP01	Yes: Insufficient monitoring
Colorado - Lower Gila Watershed		
Colorado River, <u>unnamed tributary</u> (near Thumb Butte) headwaters - Colorado River	AZ15030101-560	Yes: Insufficient monitoring
Hunter's Hole (lake)	AZL15030108-0660	Yes: Selenium, insufficient monitoring
Lake Mohave	AZL15030101-0960	Yes: Insufficient monitoring
Mittry Lake	AZL15030107-0950	Yes: Insufficient monitoring

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern
Little Colorado - San Juan Watershed			
Black Canyon Lake	AZL15020010-0180	Yes:	Fish kill related to fire (2002), insufficient monitoring
Brown Creek headwaters - Silver Creek	AZ15020005-016	Yes:	Insufficient monitoring
Buck Springs Canyon Creek headwaters - Leonard Canyon	AZ15020008-557	Yes:	pH (low), turbidity/suspended sediment concentration, insufficient monitoring
Bunch Reservoir	AZL15020001-0230	Yes:	Dissolved oxygen, missing core parameters
Carnero Lake	AZL15020001-0260	Yes:	Dissolved oxygen, pH (high), missing core parameters
Chevelon Creek headwaters - West Chevelon Creek	AZ15020010-006	Yes:	Dissolved oxygen, insufficient monitoring
Cholla Lake	AZL15020008-0320	Yes:	Fish kill (2002), missing core parameters
Fish Creek headwaters - Little Colorado River	AZ15020001-211	Yes:	Mercury, insufficient monitoring
Hall Creek headwaters - Little Colorado River	AZ15020001-012	Yes:	Insufficient monitoring
Lee Valley Creek Lee Valley Reservoir - East Fork Little Colorado River	AZ15020001-232B	Yes:	Insufficient monitoring
Little Colorado River HUC boundary 15020001 - unnamed tributary (15020002-025)	AZ15020002-024	Yes:	Insufficient monitoring
Little Colorado River Zion Reservoir - Concho Creek	AZ15020002-016	Yes:	Suspended sediment concentration, missing core parameters
Little Colorado River, South Fork headwaters - Little Colorado River	AZ15020001-027	Yes:	Insufficient monitoring
McKay Reservoir	AZL15020001-0007	Yes:	Dissolved oxygen, pH (high), insufficient monitoring
Nelson Reservoir	AZL15020001-1000	Yes:	Insufficient monitoring
Porter Creek headwaters - Show Low Creek	AZ15020005-246	Yes:	Turbidity/suspended sediment concentration, insufficient monitoring
River Reservoir	AZL15020001-1220	Yes:	Missing core parameters
Silver Creek Seven Mile Draw - Little Colorado River	AZ15020005-001	Yes:	Turbidity/suspended sediment concentration, insufficient monitoring
Tunnel Reservoir	AZL15020001-1550	Yes:	Dissolved oxygen, missing core parameters
Walnut Creek Pine Lake - Rainbow Lake	AZ15020005-238	Yes:	Insufficient monitoring

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern
Willow Creek headwaters - East Clear Creek	AZ15020008-011	Yes:	Insufficient monitoring
Willow Spring Creek headwaters - Chevelon Creek	AZ15020010-240	Yes:	Insufficient monitoring
Woods Canyon Creek headwaters - Chevelon Creek	AZ15020010-084	Yes:	Dissolved oxygen, insufficient monitoring
Middle Gila Watershed			
Antelope Creek headwaters - Martinez Creek	AZ15070103-010	Yes:	Insufficient monitoring
Arizona Canal Granite Reef Dam - Cholla water treatment plant	AZ15060106B-099A	Yes:	Missing core parameters
Arizona Canal Cholla water treatment plant - HUC boundary 15070102	AZ15060106B-099B	Yes:	Missing core parameters
Blue John Creek headwaters - unnamed tributary to Lynx Creek	AZ15070102-471	Yes:	Cadmium, copper, zinc, insufficient monitoring
Buckeye Canal Gila River - South Extension Canal	AZ15070101-209	Yes:	DDE (DDT pesticide metabolite), missing core parameters
Consolidated Canal HUC boundary 15060106B - above water treatment plant intake	AZ15050100-074A	Yes:	Missing core parameters
Dripping Spring Wash headwaters - Gila River	AZ15050100-011	Yes:	Insufficient monitoring
Eastern Canal Water treatment plant intake (below Warner Road) - terminus	AZ15050100-207B	Yes:	Missing core parameters
Fain Lake	AZL15070102-0005	Yes:	Turbidity, insufficient monitoring
Galena Gulch headwaters - Agua Fria River	AZ15070102-745	Yes:	Cyanide, insufficient monitoring
Gila River Dripping Spring Wash - San Pedro River	AZ15050100-009	Yes:	Insufficient monitoring
Gila River Mineral Creek - Donnelly Wash	AZ15050100-007	Yes:	Copper, turbidity/suspended sediment concentration, insufficient monitoring
Gila River Ashurst-Hayden Dam - Florence wastewater treatment plant	AZ15050100-003B	Yes:	Copper, insufficient monitoring
Grand Canal HUC boundary 15070101 - New River	AZ15070102-250	Yes:	Missing core parameters
Hassayampa River, <u>unnamed tributary of</u> headwaters - Hassayampa River (segment 007)	AZ15070102-417	Yes:	Copper, insufficient monitoring

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern
Indian Bend Wash headwaters - Salt River	AZ15060106B-179	Yes: Lead, missing core parameters
Little Ash Creek headwaters - Ash Creek	AZ15070102-039	Yes: Insufficient monitoring
Lynx Creek headwaters - 34 34 29 / 112 21 05	AZ15070102-033A	Yes: Cadmium, copper, insufficient monitoring
Lynx Creek, <u>unnamed tributary of</u> headwaters - Lynx Creek	AZ15070102-124	Yes: Cadmium, copper, zinc, insufficient monitoring
Martinez Canyon Creek headwaters - Box Canyon	AZ15050100-080	Yes: Insufficient monitoring
Mineral Creek headwaters - Devils Canyon	AZ15050100-012A	Yes: Insufficient monitoring
New River headwaters - Interstate 17	AZ15070102-006A	Yes: Insufficient monitoring
Salt River 2 km below Granite Reef Dam - Interstate 10 bridge	AZ15060106B-001B	Yes: Insufficient monitoring
South Canal Granite Reef Dam - Consolidated Canal	AZ15060106B-180	Yes: Missing core parameters
Tempe Canal HUC boundary 15050100 - Western Canal	AZ15050100-115	Yes: Missing core parameters
Turkey Creek headwaters - unnamed tributary at 34 19 28 / 112 21 28	AZ15070102-036A	Yes: Missing core parameters
Western Canal Tempe Canal - HUC boundary 15050100	AZ15060106B-262	Yes: Missing core parameters
Western Canal HUC boundary 15050100 - terminus	AZ15050100-990	Yes: Missing core parameters
Salt River Watershed	•	
Bear Wallow Creek, North Fork headwaters - Bear Wallow Creek	AZ15060101-022	Yes: Missing core parameters
Bear Wallow Creek, <u>South Fork</u> headwaters - Bear Wallow Creek	AZ15060101-258	Yes: Insufficient monitoring
Bloody Tanks Wash Schultz Ranch - Miami Wash	AZ15060103-034B	Yes: Copper, insufficient monitoring
Cottonwood Canyon headwaters - Pinto Creek	AZ15060103-891	Yes: Insufficient monitoring
Gold Gulch Canyon headwaters - Pinto Creek	AZ15060103-894	Yes: Insufficient monitoring

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern
Hay Creek headwaters - West Fork Black River	AZ15060101-353	Yes: Insufficient monitoring
Lake Sierra Blanca	AZL15060101-1390	Yes: Fish kill (1998), insufficient monitoring
Miller Springs Canyon headwaters - Pinto Creek	AZ15060103-892	Yes: Selenium, turbidity/suspended sediment concentration, missing core parameters
Pinto Creek, West Fork headwaters - Pinto Creek	AZ15060103-066	Yes: Insufficient monitoring
Reservation Creek headwaters - Black River	AZ15060101-010	Yes: Insufficient monitoring
Salt River Roosevelt Lake - Apache Lake	AZ15060106A-024	Yes: Insufficient monitoring
Snake Creek headwaters - Black River	AZ15060101-045	Yes: Missing core parameters
Stinky Creek Fort Apache Reservation - West Fork Black River	AZ15060101-352A	Yes: Missing core parameters
San Pedro - Willcox Playa - Rio Yaqui Watershed		
Aravaipa Creek Wilderness Area - San Pedro River	AZ15050203-004C	Yes: Missing core parameters
Bass Canyon, <u>unnamed tributary of</u> headwaters - Bass Canyon Creek	AZ15050203-935	Yes: Insufficient monitoring
C Canyon headwaters - Mule Gulch	AZ15080301-342	Yes: Insufficient monitoring
Dubacher Canyon headwaters - Mule Gulch	AZ15080301-075	Yes: Insufficient monitoring
Grant Creek headwaters - trib at 32 38 09 / 109 56 35	AZ15050201-033A	Yes: Insufficient monitoring
Hendricks Gulch headwaters - Mule Gulch	AZ15080301-335	Yes: Insufficient monitoring
Leslie Canyon Creek headwaters - Whitewater Draw	AZ15080301-007	Yes: Insufficient monitoring
Miller Canyon Creek headwaters - San Pedro River	AZ15050202-409A	Yes: Insufficient monitoring
Morales Creek headwaters - Mule Gulch	AZ15080301-331	Yes: Insufficient monitoring
Mule Gulch Highway 80 bridge - Whitewater Draw	AZ15080301-090D	Yes: Copper exceedance and insufficient monitoring

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern		
Mural and Grassy Hill tributary headwaters - Mule Gulch	AZ15080301-334	Yes: Insufficient monitoring		
OK and Youngblood tributary headwaters - Brewery Gulch	AZ15080301-1000	Yes: Insufficient monitoring		
Riggs Flat Lake	AZL15050201-1210	Yes: Turbidity, insufficient monitoring		
Snow Flat Lake	AZL15050201-1420	Yes: Insufficient monitoring		
Spring Canyon Creek headwaters - Mule Gulch	AZ15080301-333	Yes: Insufficient monitoring		
Twin Pond	AZL15080302-0001	Yes: Insufficient monitoring		
Ward Canyon Creek headwaters - Turkey Creek	AZ15050201-433	Yes: Insufficient monitoring		
Whitewater Draw Gadwell Canyon - unnamed tributary (15080301-003)	AZ15080301-004	Yes: Lead, insufficient monitoring		
Whitewater unnamed tributary (15080301-003) - unnamed tributary at 31 20 36 / 109 34 46	AZ15080301-002A	Yes: Lead, zinc, insufficient monitoring		
Winwood Canyon headwaters - Mule Gulch	AZ15080301-340	Yes: Insufficient monitoring		
Santa Cruz - Rio Magdalena - Rio Sonoyta				
Chimenea Creek headwaters - Rincon Creek	AZ15050302-140	Yes: Insufficient monitoring		
Loma Verde Wash headwaters - unnamed tributary to Tanque Verde Wash	AZ15050302-268	Yes: Insufficient monitoring		
Madera Canyon Creek headwaters - tributary at 31 43 42 / 110 52 50	AZ15050301-322A	Yes: Insufficient monitoring		
Madrona Creek headwaters - Rincon Creek	AZ15050302-138	Yes: Insufficient monitoring		
Pena Blanca Canyon Creek Mexico border - Pena Blanca Lake	AZ15050301-808	Yes: Insufficient monitoring		
Potrero Creek Interstate 19 - Santa Cruz River	AZ15050301-500B	Yes: Chlorine, copper, missing core parameters		
Santa Cruz River Roger Road WWTP outfall - Rillito Creek	AZ15050301-003B	Yes: Missing core parameters		
Santa Cruz River HUC boundary 15050303 - Baumgartner Road	AZ15050303-005A	Yes: Missing core parameters		

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern
Sonoita Creek headwaters - Patagonia WWTP	AZ15050301-013A	Yes: Insufficient monitoring
Sycamore Canyon Creek headwaters - Mexico border	AZ15080200-002	Yes: Insufficient monitoring
Upper Gila Watershed		
Cave Creek, North Fork headwaters - Cave Creek	AZ15040006-856	Yes: Insufficient monitoring
Cluff Pond #3	AZL15040005-0370	Yes: Insufficient monitoring
East Turkey Creek headwaters - unnamed tributary at 31 58 22 / 109 12 17	AZ15040006-837A	Yes: Insufficient monitoring
Gila River San Francisco River - Eagle Creek	AZ15040005-024	Yes: Turbidity/suspended sediment concentration, insufficient monitoring
Gila River Eagle Creek - Bonita Creek	AZ15040005-023	Yes: Turbidity/suspended sediment concentration, insufficient monitoring
Turkey Creek headwaters - Campbell Blue Creek	AZ15040004-060	Yes: Missing core parameters
Verde Watershed		
Apache Creek headwaters - Walnut Creek	AZ15060201-019	Yes: Insufficient monitoring
Beaver Creek Dry Beaver Creek - Verde River	AZ15060202-002	Yes: Turbidity/suspended sediment concentration, missing core parameters
Bitter Creek Jerome WWTP - 2.5 miles below wastewater treatment plant	AZ15060202-066B	Yes: Insufficient monitoring
Bitter Creek, <u>unnamed tributary of</u> headwaters - Bitter Creek	AZ15060202-868	Yes: Cadmium, copper, pH (low), zinc, insufficient monitoring
Camp Creek headwaters - Verde River	AZ15060203-031	Yes: Insufficient monitoring
Colony Wash headwaters - Fort McDowell Indian Reservation	AZ15060203-998	Yes: Insufficient monitoring
East Verde River headwaters - Ellison Creek	AZ15060203-022A	Yes: Turbidity/suspended sediment concentration, insufficient monitoring
Ellison Creek headwaters - East Verde River	AZ15060203-459	Yes: Insufficient monitoring
Fossil Creek headwaters - Verde River	AZ15060203-024	Yes: Insufficient monitoring
Fountain Lake	AZL15060203-0003	Yes: Insufficient monitoring

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern
Green Valley Lake	AZL15060203-0015	Yes:	Insufficient monitoring
Horseshoe Reservoir	AZL15060203-0620	Yes:	Turbidity, missing core parameters
Munds Creek headwaters - Oak Creek	AZ15060202-415	Yes:	Missing core parameters, insufficient seasonal coverage
Oak Creek headwaters - West Fork Oak Creek	AZ15060202-019	Yes:	Turbidity/suspended sediment concentration, missing core parameters
Oak Creek Dry Creek - Spring Creek	AZ15060202-017	Yes:	Insufficient monitoring
Oak Creek Spring Creek - Verde River	AZ15060202-016	Yes:	Insufficient monitoring
Oak Creek, <u>West Fork</u> headwaters - Oak Creek	AZ15060202-020	Yes:	Insufficient monitoring
Perkins Tank	AZL15060202-1080	Yes:	Dissolved oxygen, turbidity, insufficient monitoring
Pine Creek headwaters - unnamed tributary at 34 21 51 / 111 26 46	AZ15060203-049A	Yes:	Insufficient monitoring
Pine Creek unnamed tributary at 34 21 51 / 111 26 46 - East Verde River	AZ15060203-049B	Yes:	Insufficient monitoring
Roundtree Canyon Creek headwaters - Tangle Creek	AZ15060203-853	Yes:	Insufficient monitoring
Scholze Lake	AZL15060202-1350	Yes:	Dissolved oxygen, lead, nitrogen, turbidity, missing core parameters
Spring Creek Coffee Creek - Oak Creek	AZ15060202-022	Yes:	Insufficient monitoring
Stehr Lake	AZL15060203-1480	Yes:	Insufficient monitoring
Sullivan Lake	AZL15060202-3370	Yes:	pH (high), insufficient monitoring
Sycamore Creek Cedar Creek - Verde River	AZ15060202-026	Yes:	Insufficient monitoring
Sycamore Creek headwaters - Verde River	AZ15060203-055	Yes:	Insufficient monitoring
Verde River Granite Creek - Hell Canyon	AZ15060202-052	Yes:	Insufficient monitoring
Verde River Hell Canyon - unnamed reach number 15060202-065	AZ15060202-038	Yes:	Insufficient monitoring
Verde River Sycamore Creek - Salt River	AZ15060203-001	Yes:	Insufficient monitoring events

Surface Water	Reach or Lake Number	On the 2004 Planning List Pollutants or Parameters of Concern
Webber Creek headwaters - East Verde River	AZ15060203-058	Yes: Insufficient monitoring
West Clear Creek Meadow Canyon - Verde River	AZ15060203-026B	Yes: Missing core parameters
Wet Beaver Creek Long Canyon - Rarick Canyon	AZ15060202-004	Yes: Missing core parameters
Wet Beaver Creek Rarick Canyon - Dry Beaver Creek	AZ15060202-003	Yes: Insufficient monitoring
Wet Bottom Creek headwaters - Verde River	AZ15060203-020	Yes: Insufficient monitoring

Table 28. Category 2 -- Attaining Some Uses

At least One Designated Use Assessed as "Attaining" and All Others are "Inconclusive" All Waters are On the Planning List for Follow Up Monitoring

Surface Water	Reach or Lake Number		On 2004 Planning List Pollutants or Parameters of Concern			
Bill Williams Watershed	Bill Williams Watershed					
Big Sandy River Sycamore Creek - Burro Creek	AZ15030201-004	Yes:	Selenium			
Bill Williams River Point B - Colorado River	AZ15030204-001	Yes:	Turbidity/suspended sediment concentration, missing core parameters			
Boulder Creek Copper Creek - Burro Creek	AZ15030202-005B	Yes:	Mercury, selenium, missing core parameters			
Burro Creek Francis Creek - Boulder Creek	AZ15030202-008	Yes:	Copper, mercury, missing core parameters			
Santa Maria River Bridle Wash - Date Creek	AZ15030203-009	Yes:	Escherichia coli			
Colorado - Grand Canyon Watershed						
Colorado River Lake Powell - Paria River	AZ14070006-001	Yes:	Missing core parameters			
Dogtown Reservoir	AZL15010004-0480	Yes:	Selenium, dissolved oxygen, pH (high), turbidity, missing core parameters			
Colorado - Lower Gila Watershed						
Colorado River Bill Williams River - Osborne Wash	AZ15030104-020	Yes:	Selenium			
Colorado River Indian Wash - Imperial Dam	AZ15030104-001	Yes:	Suspended sediment concentration			
Colorado River Main Canal - Mexico border	AZ15030107-001	Yes:	Suspended sediment concentration, DDE, dieldrin, selenium			
Lake Havasu	AZL15030101-0590A	Yes:	Mercury, selenium, Escherichia coli			
Little Colorado - San Juan Watershed	Little Colorado - San Juan Watershed					
Ashurst Lake	AZL15020015-0090	Yes:	Turbidity, missing core parameters			
Barbershop Canyon Creek headwaters - East Clear Creek	AZ15020008-537	Yes:	Missing core parameter			
Billy Creek headwaters - Show Low Creek	AZ15020005-019	Yes:	Turbidity/suspended sediment concentration, Escherichia coli, missing core parameter			
Blue Ridge Reservoir	AZL15020008-0200	Yes:	Dissolved oxygen, missing core parameters			

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern
Chevelon Creek Black Canyon - Little Colorado River	AZ15020010-001	Yes: Turbidity/suspended sediment concentration
Clear Creek Reservoir	AZL15020008-0340	Yes: Dissolved oxygen, missing core parameters
Colter Creek headwaters - Nutrioso Creek	AZ15020001-293	Yes: Missing core parameter
East Clear Creek headwaters - Yeager Canyon	AZ15020008-009	Yes: Dissolved oxygen, missing core parameter
Kinnikinick Lake	AZL15020015-0730	Yes: Turbidity/suspended sediment concentration, selenium, missing core parameters
Lee Valley Reservoir	AZL15020001-0770	Yes: Missing core parameters
Little Colorado River, <u>East Fork</u> headwaters - Hall Creek	AZ15020001-230	Yes: Missing core parameters
Little Colorado River, West Fork headwaters - Government Springs	AZ15020001-013A	Yes: Missing core parameters
Little Colorado River, West Fork Government Springs - Little Colorado River	AZ15020001-013B	Yes: Copper, missing core parameters
Mineral Creek headwaters - Concho Creek	AZ15020002-648	Yes: Dissolved oxygen, missing core parameter
Rio de Flag Flagstaff WWTP - San Francisco Wash	AZ15020015-004B	Yes: Turbidity/suspended sediment concentration
Show Low Creek headwaters - Linden Wash	AZ15020005-012	Yes: Turbidity/suspended sediment concentration
Silver Creek headwaters - Show Low Creek	AZ15020005-013	Yes: Dissolved oxygen, turbidity/suspended sediment concentration, missing core parameter
Woods Canyon Lake	AZL15020010-1700	Yes: Missing core parameters
Middle Gila Watershed		
Gila River San Pedro River - Mineral Creek	AZ15050100-008	Yes: Turbidity/suspended sediment concentration
Hassayampa River Copper Creek - Blind Indian Creek	AZ15070103-007B	Yes: Escherichia coli, cadmium
Hassayampa River Sols Wash - 8 miles below Wickenburg	AZ15070103-002A	Yes: Escherichia coli
Lake Pleasant	AZL15070102-1100	Yes: Ammonia, selenium, missing core parameter
Lynx Lake	AZL15070102-0860	Yes: Lead, manganese, missing core parameters
Papago Park Ponds	AZL15060106B-1030	Yes: Missing core parameters

Surface Water	Reach or Lake Number		On 2004 Planning List Pollutants or Parameters of Concern			
Salt River Watershed	Salt River Watershed					
Apache Lake	AZL15060106A-0070	Yes:	Dissolved oxygen, missing core parameters			
Bear Wallow Creek North and South Forks - Black River	AZ15060101-023	Yes:	Missing core parameters			
Beaver Creek headwaters - Black River	AZ15060101-008	Yes:	Turbidity/suspended sediment concentration, missing core parameter			
Big Lake	AZL15060101-0160	Yes:	Dissolved oxygen, missing core parameters			
Black River Beaver Creek - Reservation Creek	AZ15060101-007	Yes:	Missing core parameters			
Black River, <u>East Fork</u> headwaters - Black River	AZ15060101-009	Yes:	Missing core parameter			
Black River, <u>West Fork</u> headwaters - Black River East Fork	AZ15060101-048	Yes:	Missing core parameters			
Canyon Creek headwaters - White Mountain Apache Reservation	AZ15060103-014	Yes:	Fish kill due to fire (2002)			
Fish Creek headwaters - Black River	AZ15060101-032	Yes:	Copper, missing core parameters			
Roosevelt Lake	AZL15060103-1240	Yes:	Turbidity/suspended sediment concentration, missing core parameters			
Rye Creek headwaters - Tonto Creek	AZ15060105-014	Yes:	Missing core parameter			
Saguaro Lake	AZL15060106A-1290	Yes:	Missing core parameters			
Salt River Pinal Creek - Roosevelt Lake	AZ15060103-004	Yes:	Escherichia coli, total nitrogen, turbidity/suspended sediment concentration			
Spring Creek headwaters - Tonto Creek	AZ15060105-010	Yes:	Missing core parameter			
San Pedro - Willcox Playa - Rio Yaqui Watershed						
Copper Creek headwaters - Prospect Canyon	AZ15050203-022A	Yes:	Selenium			
Double R Canyon Creek headwaters - Bass Canyon Creek	AZ15050203-902	Yes:	Missing core parameter			
Ramsey Canyon Creek headwaters - Forest Road 110	AZ15050202-404A	Yes:	Missing core parameter			
San Pedro River Charleston - Walnut Gulch	AZ15050202-006	Yes:	Turbidity/suspended sediment concentration			

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern
San Pedro River Hot Springs Creek - Redfield Canyon	AZ15050203-011	Yes: Escherichia coli, turbidity/suspended sediment concentration
Whitewater Draw Unnamed trib. at 31 20 36 / 109 34 46 - Mexico border	AZ15080301-002B	Yes: Lead, missing core parameters
Santa Cruz - Rio Magdalena - Rio Sonoyta		
Cienega Creek headwaters - Gardner Canyon	AZ15050302-006A	Yes: Missing core parameter
Cienega Creek Gardner Canyon - USGS gage (Pantano Wash)	AZ15050302-006B	Yes: Missing core parameter
Kennedy Lake	AZL15050301-0720	Yes: Missing core parameters
Patagonia Lake	AZL15050301-1050	Yes: Missing core parameters
Sabino Canyon Creek tributary at 32 23 28 / 110 47 00 - Tanque Verde Wash	AZ15050302-014B	Yes: Missing core parameters
Santa Cruz River Nogales WWTP - Josephine Canyon	AZ15050301-009	Yes: Missing core parameters
Santa Cruz River Josephine Canyon - Tubac Bridge	AZ15050301-008A	Yes: Turbidity/suspended sediment concentration, chlorine, missing core parameters
Santa Cruz River Tubac Bridge - Sopori Wash	AZ15050301-008B	Yes: Missing core parameters
Santa Cruz River Canada del Oro - HUC boundary 15050303	AZ15050301-001	Yes: Chlorine
Upper Gila Watershed		
Ash Creek tributary at 32 45 37 / 109 52 22 - Gila River	AZ15040005-040B	Yes: Missing core parameters
Blue River New Mexico border - KP Creek	AZ15040004-026	Yes: Missing core parameters
Blue River KP Creek - Strayhorse Creek	AZ15040004-025A	Yes: Missing core parameters
Campbell Blue Creek headwaters - Blue River	AZ15040004-028	Yes: Missing core parameter
Cave Creek South Fork of Cave Creek - USFS boundary	AZ15040006-852B	Yes: Turbidity/suspended sediment concentration
Cave Creek, <u>South Fork</u> headwaters - Cave Creek	AZ15040006-849	Yes: Escherichia coli
Dankworth Ponds	AZL15040005-0440	Yes: Selenium, turbidity, missing core parameters

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern
Eagle Creek headwaters - unnamed tributary at 33 23 24 / 109 29 35	AZ15040005-028A	Yes: Missing core parameters
Frye Canyon Creek headwaters - Frey Mesa Reservoir	AZ15040005-988A	Yes: Missing core parameters
Gila River New Mexico border - Bitter Creek	AZ15040002-004	Yes: Selenium
KP Creek headwaters - Blue River	AZ15040004-029	Yes: Missing core parameters
Roper Lake	AZL15040005-1250	Yes: Missing core parameter
San Francisco River New Mexico border - Blue River	AZ15040004-004	Yes: Turbidity/suspended sediment concentration
San Francisco River Blue River - Limestone Gulch	AZ15040004-003	Yes: Escherichia coli
San Francisco River Limestone Gulch - Gila River	AZ15040004-001	Yes: Turbidity/suspended sediment concentration, copper, Escherichia coli
Verde Watershed		
Bartlett Lake	AZL15060203-0110	Yes: Missing core parameters
Granite Basin Lake	AZL15060201-0580	Yes: pH, ammonia, missing core parameters
East Verde River American Gulch - Verde River	AZ15060203-022C	Yes: Boron
J.D. Dam Lake	AZ15060202-0700	Yes: pH (low), missing core parameters
Pumphouse Wash headwaters - Oak Creek	AZ15060202-442	Yes: Missing core parameters
Verde River Sycamore Creek - Oak Creek	AZ15060202-025	Yes: Mercury, Escherichia coli
Verde River HUC boundary 15060203 - West Clear Creek	AZ15060203-027	Yes: Escherichia coli, missing core parameters
Verde River Tangle Creek - Ister Flat	AZ15060203-018	Yes: Turbidity/SSC, Escherichia coli
Verde River Horseshoe Dam - Alder Creek	AZ15060203-008	Yes: Missing core parameters
Verde River Camp Creek - Sycamore Creek	AZ15060203-003	Yes: Missing core parameters

Table 29. Category 1 -- Attaining All Uses

All Designated Uses are Assessed as "Attaining"

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern			
Bill Williams Watershed					
Trout Creek Cow Creek - Knight Creek	AZ15030201-014	No			
Colorado - Grand Canyon Watershed (no Category 1 waters)					
Colorado - Lower Gila Watershed (no Category 1 waters)					
Little Colorado - San Juan Watershed (no Category 1 waters)					
Middle Gila Watershed					
Agua Fria River Sycamore Creek - Big Bug Creek	AZ15070102-023	No			
Agua Fria River Little Squaw Creek - Cottonwood Creek	AZ15070102-017	No			
Arnett Creek headwaters - Queen Creek	AZ15050100-1818	No			
Cave Creek headwaters - Cave Creek Dam	AZ15060106B-026A	No			
Hassayampa River Cottonwood Creek - Martinez Wash	AZ15070103-004	No			
Sycamore Creek Tank Canyon - Agua Fria River	AZ15070102-024B	No			
Tempe Town Lake	AZL15060106B-1588	No			
Salt River Watershed					
Campaign Creek headwaters - Pinto Creek	AZ15060103-037	No			
Cherry Creek tributary at 34 05 09 / 110 56 04 - Salt River	AZ15060103-015B	No			
Coon Creek unnamed tributary at 33 46 42 / 110 54 25 - Salt River	AZ15060103-039B	No			
Deer Creek headwaters - Rye Creek	AZ15060105-018	No			
Greenback Creek headwaters - Tonto Creek	AZ15060105-005	No			

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern
Haigler Creek headwaters - unnamed reach at 34 12 23.1 / 111 00 11	AZ15060105-012A	No
Haunted Canyon headwaters - Pinto Creek	AZ15060103-879	No
Pinal Creek Jesse Lane - Salt River	AZ15060103-280D	No
Tonto Creek Rye Creek - Gun Creek	AZ15060105-008	No
San Pedro - Willcox Playa - Rio Yaqui Watershed	•	
Aravaipa Creek Stowe Gulch - Wilderness Area	AZ15050203-004B	No
Bass Canyon Creek tributary at 32 26 06 / 110 1318 - Hot Springs Canyon Creek	AZ15050203-899B	No
Buehman Canyon headwaters - end of Unique Waters	AZ15050203-010A	No
Hot Springs Canyon Creek headwaters - San Pedro River	AZ15050203-013	No
Rucker Canyon Creek headwaters - Whitewater Draw	AZ15080301-288	No
Santa Cruz - Rio Magdalena - Rio Sonoyta		
Redrock Canyon Creek headwaters - Harshaw Creek	AZ15050301-576	No
Santa Cruz River headwaters - Mexico border	AZ15050301-268	No
Upper Gila Watershed		
Blue River Strayhorse Creek - San Francisco River	AZ15040004-025B	No
Bonita Creek Park Creek - Gila River	AZ15040005-030	No
Eagle Creek Willow Creek - Sheep Wash	AZ15040005-027	No
Eagle Creek Sheep Wash - Gila River	AZ15040005-025	No

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern
Verde Watershed		
Oak Creek Below Slide Rock State Park - Dry Creek	AZ15060202-018C	No
Verde River Unnamed reach 15060202-065 - Railroad Draw	AZ15060202-037	No

This reach of Trout Creek, near Wikieup, Arizona, was placed in Category 1 because it is attaining all designated uses.

What is Arizona removing from its 2002 303(d) List?

The parameters of concern being removed from the 2002 303(d) List and the reason for their removal were detailed in the assessment tables in Chapter IV. The following list (Table 30) provides a delist summary, showing a total of 58 parameters delisted from 31 streams and three lakes. Most of these changes were due to completion of a TMDL (23 parameters) or due to a change in water quality standards (25 parameters).

At least one of the following criteria for delisting a pollutant or reach is shown in **Table 30**, as established in the Impaired Water Identification Rule (Appendix B) (R18-11-605.E.2 and R18-11-604.B):

Criteria Number

- 1. EPA-approved TMDL has been developed for the pollutant.
- 2. New data indicate that the water quality standard is being met.
- 3. Change in the standard or designated use has resulted in the water quality standard no longer being exceeded.
- 4. Reevaluation of the assessment information indicates an error or deficiency in the original analysis resulted in an inappropriate listing.
- 5. Pollutant loadings from naturally occurring conditions alone are sufficient to cause a violation of the water quality standard.
- 6. Reach is split and no current or historic data exist in this portion of the reach that would support a listing.

Table 30. Pollutants and surface waters removed from 2002 303(d) List

Surface Water	Reach or Lake Number	Pollutant of Concern Removed From List	Criteria For Delist	Delist Surface Water		
Bill Williams Watershed						
Alamo Lake	AZL15030204-0040	Low dissolved oxygen	2 - Current data indicates uses are being attained.	No. Remains on list due to ammonia, mercury		
		Sulfide	3 - Change in standard. Data shows that new standard is attained.	in fish tissue, and high pH.		
Boulder Creek unnamed wash at 34 41 14 / 113 03 34 - Wilder Creek	AZ15030202-006B	Fluoride	3 - Change in standard. Data shows that new standard is attained.	No. Remains on list due to mercury.		
Colorado - Grand Canyon Watershed						
Colorado River Parashant - Diamond Creek	AZ15010002-003	Turbidity	3 - Change in standard. Moved to the Planning List.	No. Remains on the list due to selenium and suspended sediment concentration.		
Virgin River Beaver Dam Wash - Big Bend Wash	AZ15010010-003	Fecal coliform	3 - Change in standard. Escherichia coli standard is being attained.	No. Remains on the list due to selenium and suspended sediment concentration.		
		Turbidity	3 - Change in standard. Moved to the Planning List.	1		
Colorado - Lower Gila Watershed						
Painted Rock Borrow Pit Lake	AZ15070201-1010	Fecal coliform	3 - Change in standard. Moved to the Planning List for Escherichia coli monitoring (new standard).	No. Remains on list due to fish consumption advisory (DDT metabolites, toxaphene and chlordane in fish), and low dissolved oxygen.		

Surface Water	Reach or Lake Number	Pollutant of Concern Removed From List	Criteria For Delist	Delist Surface Water			
Little Colorado - San Juan Watershe	ed						
Little Colorado River Water Canyon Creek - Nutrioso Creek	AZ15020001-010	Turbidity	1 - TMDL approved in 2002. Moved to the Planning List.	Yes.			
Little Colorado River Nutrioso Creek - Carnero Wash	AZ15020001-009	Turbidity	1 - TMDL approved in 2002. Moved to the Planning List.	Yes.			
Middle Gila Watershed							
French Gulch headwaters - Hassayampa River	AZ15070103-239	Manganese	3 - Change in standard. Data shows that new standard is attained.	No. Remains on list due to cadmium, copper and zinc.			
Gila River Centennial Wash - Gillespie Dam	AZ15070101-008	Turbidity	3 - Change in standard. Moved to the Planning List.	No. Remains on list due to fish consumption advisory (DDT metabolites, toxaphene and chlordane in fish), boron, and selenium.			
Hassayampa River headwaters - Copper Creek	AZ15070103-007A	Zinc	TMDLs for cadmium, copper, and zinc approved in 2002. (Cadmium and copper were delisted in 2002; however, TMDLs had already been drafted.) Moved to the Planning list.	Yes.			
Mineral Creek Devils Canyon - Gila River	AZ15050100-012B	Beryllium	3 - Change in standard. Data shows that new standard is attained.	No. Remains on list due to copper and selenium.			
		рH	2 - Current data indicates uses are being attained. (Remediation activities removing contaminants.)				
		Zinc	Current data indicates uses are being attained. (Remediation activities removing contaminants.)	1			
Turkey Creek headwaters - tributary at	AZ15070102-036A	Cadmium	6 - Reach was split in 2002 due to changes in designated uses at 5000-foot elevation. All exceedances that resulted in	Yes.			
34 19 28 / 112 21 28		Copper	a listing occurred in the lower reach (AZ15070102-036B).				
		Zinc					
Salt River Watershed							
Christopher Creek headwaters - Tonto Creek	AZ15060105-353	Turbidity	3 - Change in standard. Moved to Planning List.	No. Remains on list due to Escherichia coli.			
Tonto Creek headwaters - unnamed tributary at 34 18 10 / 111 04 14	AZ15060105-013A	Turbidity	3 - Change in standard. Moved to Planning List.	Yes.			
Tonto Creek unnamed tributary at 34 18 10 / 111 04 14 - Haigler Creek	AZ15060105-013B	Turbidity	3 - Change in standard. Moved to Planning List.	Yes.			
Tonto Creek Rye Creek - Gun Creek	AZ15060105-008	Turbidity	3 - Change in standard 2 - Current data shows no exceedances in 18 samples.	Yes.			

Surface Water	Reach or Lake Number	Pollutant of Concern Removed From List	Criteria For Delist	Delist Surface Water			
San Pedro - Willcox Playa - Rio Yaqui V	Watershed						
Mule Gulch	AZ15080301-090A	рН	2. Current data shows low pH in only 1 of 10 samples, and	No. Remains on the list due to copper.			
headwaters - above Lavender Pit		Zinc	no zinc exceedances in 15 samples.				
Santa Cruz - Rio Magdalena - Rio Sono	oyta						
Alum Gulch headwaters - 31 28 20 / 110 43 51	AZ15050301-561A	Cadmium	1 - TMDLs approved in 2003. Moved to the Planning List.	Yes.			
neauwaters - 31 20 20 / 110 43 31		Copper					
		рН					
		Zinc					
Alum Gulch 31 28 20 / 110 43 51 - 31 29 17 / 110 44 25	AZ15050301-561B	Cadmium	1 - TMDLs approved in 2003. Moved to the Planning List.	Yes.			
01202071104001 01251771104420		Copper					
		pН					
		Zinc					
Harshaw Creek headwaters - Sonoita Creek	AZ15050301-025	Zinc	3 - Designated use changed from A&Ww to A&We. Zinc data meet new ephemeral standards.	Yes.			
Nogales and East Nogales Washes Mexico border - Potrero Creek	AZ15050301-011	Fecal coliform	2 - Change in standard. Now listed due to Escherichia coli exceedances.	No. Remains on list due to ammonia, chlorine, copper, and Eshcerichia coli.			
		Turbidity	3 - Change in standard. Moved to Planning List.				
Potrero Creek Interstate 19 - Santa Cruz River	AZ15050301-500B	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 15 samples.)	Yes.			
Santa Cruz River Mexico border - Nogales WWTP	AZ15050301-010	Fecal coliform	3 - Change in standard. Now listed due to Escherichia coli exceedances.	No. Remains on list due to Eshcerichia coli.			
Santa Cruz River Nogales WWTP - Josephine Canyon	AZ15050301-009	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 15 samples.)	Yes.			
Santa Cruz River Josephine Canyon - Tubac Bridge	AZ15050301-008A	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 16 samples.)	Yes.			
		Turbidity	3 - Change in standard. Moved to the Planning List.				
Santa Cruz River Tubac Bridge - Sopori Wash	AZ15050301-008B	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 17 samples.)	Yes.			
Three R Canyon headwaters - 31 28 35 / 110 46 19	AZ15050301-558A	Cadmium	1 - TMDLs approved in 2003. Moved to the Planning List.	Yes.			
neauwateis - 31 20 33 / 110 40 19		Copper					
		рН					

Surface Water	Reach or Lake Number	Pollutant of Concern Removed From List	Criteria For Delist	Delist Surface Water		
		Zinc				
Three R Canyon 31 28 35 / 110 46 19 - 31 28 27 / 110 47 12	AZ15050301-558B	Cadmium	1 - TMDLs approved in 2003. Moved to the Planning List.	Yes.		
31 28 35 / 110 40 19 - 31 28 27 / 110 47 12		Copper				
		рН				
		Zinc				
Three R Canyon 31 28 27 / 110 47 12 - Sonoita Creek	AZ15050301-558C	Cadmium	1 - TMDLs approved in 2003. Moved to the Planning List.	Yes.		
31 28 27 / 110 47 12 - Sonoita Creek		Copper				
		рН				
		Zinc				
Upper Gila Watershed						
Gila River Bonita Creek - Yuma Wash	AZ15040005-022	Turbidity	3 - Change in standard. Moved to the Planning List.	No. Remains on list due to Escherichia coli.		
San Francisco River Limestone Gulch - Gila River	AZ15040004-001	Turbidity	3 - Change in standard. Moved to the Planning List.	Yes.		
Verde Watershed						
Beaver Creek Dry Beaver Creek - Verde River	AZ15060202-002	Turbidity	3 - Change in standard. Moved to the Planning List.	Yes.		
Granite Basin Lake	AZL15060202-0580	Dissolved oxygen	5 - Low dissolved oxygen due to natural conditions only (lake turnover).	Yes.		
Oak Creek Below Slide Rock State Park - Dry Creek	AZ15060202-018B	Turbidity	3 - Designated use changed from A&Wc to A&Ww because reach is below 5000-foot elevation. Current and historic turbidity data would meet former turbidity standard for A&Ww.	Yes.		

Which TMDLs will ADEQ do next?

Priority Ranking and Scheduling TMDLs – The Clean Water Act and federal regulations (40 CFR 130.7) require the state to establish a priority ranking for each surface water on the 303(d) List. The criteria for this ranking and which TMDLs will be targeted for initiation within the next two years is established in the Impaired Waters Rule (R18-11-606) (**Appendix B**). Arizona's ranking system reflects the relative value and benefits of each surface water to the state and considers, among other factors:

- 1. The severity of the impairment in relation to the designated uses, especially threats to human health, aquatic life and wildlife;
- 2. Surface waters where endangered or threatened species exist and the pollutant is likely to further jeopardize the listed species;
- 3. Other pertinent information such as: economic or aesthetic importance, the complexity of the TMDL, degree of public interest, permitting issues, an impending change in water quality standard or designated use, and date when the surface water was first placed on the 303(d) List.

Specific factors considered in prioritizing and scheduling impaired surface waters for TMDL development are listed as footnotes at the end of **Table 31**. As a surface water may have a mixture of high, medium, and low priority factors, the final priority ranking considers all factors but weighs some factors more heavily than others. The TMDL schedule in **Table 31** also indicates which factors were applied, which were weighed more heavily, and a brief discussion of the final priority ranking determination.

In general, the surface water was automatically listed as <u>high priority</u>, and ADEQ will initiate development of the associated TMDL within two years following EPA's approval of the 303(d) List, if there is a substantial threat to health and safety of humans, aquatic life, or wildlife. This determination was based on the following four factors:

- 1. The magnitude of the exceedance. For example, the laboratory result was more than twice the standard.
- 2. The duration or persistence of the problem. For example, more than half the samples exceeded standards.
- 3. The standard was established to protect human health or wildlife from imminent harm. For example, the acute toxic Aquatic and Wildlife standards were established based on short-term exposures rather than long-term or life-time exposures.
- 4. A Threatened or Endangered species may be further jeopardized by the water

quality problem. This was determined by using the following information provided by the Arizona Game and Fish Department and the US Fish and Wildlife Service:

- A federally-protected Threatened or Endangered species has been confirmed within a mile of the surface water listed or the surface water is within "critical habitat" established for the species;
- A standard to protect aquatic and wildlife has been exceeded; and
- Published reasons for decline and vulnerability of the species or other published reports indicate that the pollutant or source of the exceedance may further jeopardize this species.

Some <u>low priority</u> factors take precedence over high priority factors when completing a TMDL at this time would either not be appropriate, be premature, or be an inefficient use of resources. These factors included:

- 1. ADEQ has formally submitted to EPA a proposal to delist the surface water or pollutant.
- 2. ADEQ has adopted a new surface water quality standard or designated use that is currently being reviewed by EPA for approval. When approved, the standard would no longer be violated.
- 3. The surface water is expected to attain surface water quality standards before the next listing cycle due to:
 - Recently instituted treatment levels or best management practices in the drainage area,
 - Discharges or activities related to the impairment have ceased, or
 - Actions have been taken and the controls are in place or firmly scheduled for implementation that are likely to bring the surface water back into compliance.
- 4. The water quality problem can be resolved only through the cooperative actions of an agency outside the state or federal jurisdiction (e.g., Mexico, another state, or Indian reservation).

EPA may also revise this schedule during its review process. Or it may become necessary to shift priority ranking of a surface water due to significant changes in resources to complete TMDLs or new information obtained concerning one of the priority factors. Such changes would be negotiated with EPA and would be made known to the public through the TMDL status page on ADEQ's web site: www.azdeq.gov.

Table 31. TMDL priority ranking and schedule

for ADEQ 303(d) listings (see EPA listings in Table 32 to follow)
(See key to priority factors on p. 46)

Surface Water Identification	Pollutant	Year First Listed	H 1 *		H 3	H 4 *	H 5	H 6	H 7	H 8	М	M 2	to pi M 3	M 4	M 5	M 6	L 1	L 2 *	L 3 *	L 4	L 5	L 6	L 7 *	L 8	L		TIME TABLE **				
Bill Williams Watershe	ed	I.																								•	•				
Alamo Lake 1,414 acres AZL15030204-0040	Mercury (in fish tissue)	1998 (2002 EPA)	<u>H</u> 1			<u>H</u> <u>4</u>			<u>H</u> <u>7</u>						M 5	M 6						L 6				High priority	Initiated monitoring and investigation in 2003. Initiate TMDL in 2004. Complete TMDL in 2005.				
			the coo	bald e	agle	(a sp esea	pecie	es fed or po	derall tentia	y-liste al me	ed as	Thre sour	atene ces fo	d) (H the	l4) an five n	d the	lake	supp ings	orts in thi	signi s wa	fican tersh	t spor	rt fish	ning ((H7)	re a food source for). ADEQ will be ave common sources					
	Ammonia	2004							H 7							M 6						L 6				Medium priority	Ongoing monitoring by US Fish and Wildlife Service.				
	рН	1996							H 7		M 1					M 6										Medium priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.				
			be of fish fede	compleing are	eted ea (H listed gnific	by 20 17). T d as 1 ant t	004. The e Threa hreat	High eleva atene t to a	amm ted ai ed). M iquati	nonia mmo lore i c life	and nia a nvest due	pH le nd pH tigation to its	vels m I shou on is n toxic r	nay ir Id <u>no</u> eede natur	ndicat ot neg ed to d e, the	e eut ative deteri chro	trophi ly imp mine nic a	catio act t the s	n pro he ba ource	blem ald ea e of th	ns tha agles he po	at may s locat ollutar	y lea ted n nts (l	d to f near t L6). A	fish this Alth	6). Classification is to kills at this popular lake (a species that is ough ammonia could nly 2 of 36 sampling					
Colorado-Grand Cany	on Watershed																														
Colorado River Parashant Canyon -	Selenium	2004													M 5							L 6		L 8		Low priority	Ongoing fixed station monitoring by USGS.				
Diamond Creek 28 miles AZ15010002-003	Suspended Sediment Concentration	2004													M 5							L 6		L 8		Low priority	 Initiate monitoring and investigation in 2010. Initiate TMDL in 2011. Complete TMDL in 2012. 				
	Concentration		sou ups hun	rce loa	ading state k chu	gs, es es ma	speci ay m	ially o	contri comp	butio letior	ns fro	om na nis TN	tural b	oacko ore	groun comp	d (L6 lex (N	, L8). И5). Т	Sou wo f	rce c edera	ontrib ally p	bution rotec	ns fro	m U pecie	tah, (es oc	Colo	eded to determine orado, and other in this area, the atively low levels of					
Paria River Utah border - Colorado River	Suspended Sediment	2004													M 5							L 6		L 8		Low priority	Initiate monitoring and investigation in 2010. Initiate TMDL in 2011.				
AZ14070007-123	29 miles Concentration AZ14070007-123						ne so	ource	load	ings,	espe		contri													ner investigation is utions from Utah may	Complete TMDL in 2012.				
Virgin River Beaver Dam Wash - Big	Selenium	2004													M 5	<u>M</u> 6						L 6		L 8		Medium priority	Ongoing fixed station monitoring by USGS. Initiate monitoring and investigation in 2009.				
Bend Wash 10 miles AZ15010010-003	Suspended Sediment Concentration	2004													M 5	M 6						L 6		L 8		Medium priority	Initiate TMDL in 2010. Complete TMDL in 2011.				
	Concentration		sou this imp	rce lo	ading _ mo by th	gs, es re co ne ele	speci mple evate	ially o ex (M ed se	contri 15). F Ieniui	butio edera m an	ns fro ally pi d sus	om na rotect spend	tural l ed Vir ed se	ackę gin F dime	groun River o	d (L6 chub ncent	i, L8). and v	Sou voun	rce c dfin c	ontrik occur	bution in th	ns fro	ım Ü ea, bi	tah n ut sh	nay lould	needed to determine make completion of d not be negatively selenium TMDLs in					

TMDL Schedule V- 35

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5						M 3					L 2 *	L 3 *	L 4	L 5	L 6	L 7 *	L 8	L 9		TIME TABLE **		
Colorado-Lower Gila \	Vatershed																												
Colorado River Hoover Dam - Lake Mohave 40 miles AZ15030101-015	Selenium	2004	Prid	The federally protected Yuma clapper rail occurs in this area and could be negatively impacted by elevated lead or selenium (H4). Prior monitoring in this drainage should help support TMDL development (M6); however, further investigation is needed to determine source loadings, especially contributions from natural background (L6, L8). Note that significant selenium loadings may be contributed from upstream sources in Utah and Colorado and may make completion of the TMDL more complex (M5).									Ongoing fixed station monitoring by USGS. Initiate monitoring and investigation in 2009. Initiate TMDL in 2010. Complete TMDL in 2011.																
Gila River Coyote Wash - Fortuna	Boron	2004							H 7						M 5	Τ̈́					L 5	L		,		High priority	Ongoing fixed station monitoring. Initiate monitoring and investigation in 2006.		
Wash 28 miles AZ15070201-003	Selenium	2004				<u>H</u> <u>4</u>									M 5	M 6						L 6					Initiate TMDLs in 2007. Complete TMDLs in 2008.		
			sele con imp	eniur nplex act o	m (H4 x due down:	to la strea	evat irge im a	ed se numb gricul	leniu er of tural	m and poted uses	d bor ntial s (H7)	on ma source but p	ay be es an resen	asso d pot it a lo	ciate ential w eco	d with seasologic	h the sonal	exten influe d hur	sive a ences man h	agric (M3 nealtl	ulture , M5, n risk	in th L6). (L5).	ne are Boror	a; ho	owev	d by elevated er, TMDL may be trations found may MDL investigations			
Painted Rocks Borrow Pit Lake	Low dissolved oxygen	1992																		L 4	L 5			L 8		Low priority	Lakes classification study will be completed in 2004 and will determine need for TMDL.		
180 acres AZL15070201-1010							A 1992 diagnostic feasibility study by ADEQ suggested the causes of low dissolved oxygen were due to design and maintenance problems on this shallow lake and suggested strategies to improve water quality. Drought conditions have reduced lake levels and may be related to some of the low dissolved oxygen readings (L8). During the past year, the lake has been dry and representative water samples at the lake could not be collected (L4). The lake is no longer being stocked with fish and does not have recreational uses because of historic pesticide contamination and fish consumption advisories (L5).																						
	DDT metabolites, toxaphene,	1988 (EPA 2002)	<u>H</u> 1			<u>H</u> <u>4</u>									M 5	M 6						L 6				High priority	Initiate monitoring and investigation in 2008. Initiate TMDLs in 2009. Complete TMDLs in 2010.		
	chlordane in fish tissue					The federally protected Yuma clapper rail occurs in this area and could be negatively impacted by pesticides (H4). There is no public access, thus the public health risk due to fish tissue contamination is significantly reduced; however, these pesticides still present a high risk to aquatic life and species that prey on them (H1). The TMDLs will be complex due to the size of the drainage and potential sources (M5) and will require significant monitoring resources to determine the sources of this historic pesticide (L6). TMDLs will be coordinated with related pesticide TMDLs in the Middle Gila (M6).																							
Little Colorado-San Ju	ıan Watershed																												
Little Colorado River Silver Creek - Carr Wash 6 miles	Escherichia coli	2004	H 1										M 3		M 5	M 6						L 6				Medium priority	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.		
AZ15020002-004						wate ermin	er (H	l1). E	xcee	dance of co	es ma	ay be inatio	relate	ed to y be	wet v	veath	ner ev	ents (Il req	(M3). uire s	The subst	drain antial	age :	area i itorin	s mo	ore th ta to	mming or even an 8,000 square identify sources (M5,	Complete TMDE in 2007.		
Little Colorado River Porter Tank Draw - McDonalds Wash 17 miles	Copper	1992	<u>H</u> 1			<u>H</u> <u>4</u>									M 5							L 6		L 8		High priority	Initiate monitoring and investigation in 2005. Initiate TMDL in 2007. Complete TMDL in 2009.		
AZ15020008-017	Silver	1992	<u>H</u>			<u>H</u> <u>4</u>									M 5							L 6		L 8					

TMDL Schedule V- 36

Surface Water Identification	Pollutant	Year First Listed	H 1 *	2		H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3	M 4	M 5	M 6	L 1 *	L 2 *	L 3 *	L 4	L 5	L 6	L 7 *	L 8	L 9	RANKING	TIME TABLE **
	Suspended Sediment Concentration	2004													M 5							L 6				Medium priority	Initiate monitoring and investigation in 2005. Initiate TMDL in 2007. Complete TMDL in 2009.
			1 for s	1 san edera hould nay be	nples ly pro not b natu	excee tecte e neg rally	eded d as a jative eleva	the co a Thre ly imp ted (L	opper eaten oacte .8); h	r stan ed sp d by t owev	dard, becies the si er, so	and s, occ usper ource	2 out curs in nded s and	of 9 n this sedin I natu	samp reacl nent o	oles e h and conce ading	excee d may entrat g con	ded to be notion. In centra	ne silv egativ ata fi ations	ver si vely i rom a s nee	tanda mpac a USC d to b	ird) (H ted b 3S st e fur	d1). Lity the outlined the contract the cont	ttle copponction	Colo per a uded ed (Li	ceedances (9 out of rado spinedace, and silver (H4), but that the metals 6). The nature of ad to include SSC.	
Lake Mary (lower) 660 acres AZL15020015-0890	Mercury (in fish tissue)	2002 (EPA)	<u> </u>	<u>1</u>					<u>H</u> <u>7</u>						M 5	M 6						L 6				High priority	ADEQ initiated TMDL monitoring and investigation in 2003. Initiate TMDL in 2005. Complete TMDL in 2006.
Lake Mary (upper) 760 acres AZL15020015-0900			(c le	H1). N luring pading	lorma the p js (L6 s of lo	illy the ast ye). Exc pading	e lake ear. In cessiv g hav	is a itermi e me	signif ittent rcury	ficant strea in fis	publi m flo sh tiss	c rec w and	reation d droi	nal a ught en fo	iréa (I condit ound i	H7); tions n nui	howe have merou	ver, c slow us reg	ue to ed co jional	a lor Ilecti Iake	ng dro on of s. Be	ought adec caus	, the la uate o	ake data exte	has l to do nt of	als that eat the fish been dry at times etermine source impairment and ex and a high	Complete TWDE III 2000.
Middle Gila Watersh	ed																										
Alvord Park Lake 27 acres AZL15060106B-0050	Ammonia	2004	<u> </u>	<u>1</u>					<u>H</u> <u>7</u>							M 6						L 6				High priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
			Ν		rvesti	gation	n is n	eede	d to d	letern	nine t	he so	ource	of th												eational area (H7). to classify its lakes	
Chaparral Lake 13 acres AZL15060106B-0300	Low dissolved oxygen	2004							H 7							<u>M</u>						L 6				Medium priority	Initiate monitoring and investigations in 2007. Initiate TMDLs in 2008. Complete TMDLs in 2009.
	Escherichia coli	2004							H 7							<u>M</u> 6						L 6				Medium priority	
			Although exceedances of <i>Escherichia coli</i> standards represent a risk to public health, swimming or wading in the lake is prohibited. Low dissolved oxygen, which may result in fish kills, would be detrimental to this important urban recreational area (H7). More investigation is needed to identify the sources loadings (L6). Both TMDLs in this lake will be developed at the same time for efficiency (M6). ADEQ is currently establishing criteria to classify its lakes which may result in changes in assessment status (M6).																								
Cortez Park Lake 2 acres AZL15060106B-0410	Low dissolved oxygen	2004							H 7		M 1					<u>M</u> 6						L 6				Medium priority	Initiate monitoring and investigations in 2007. Initiate TMDLs in 2008. Complete TMDLs in 2009.
	pН	2004							H 7			M 2				<u>M</u>						L 6					
			(r	M6). F	or ef	ficiend kills,	cy, Bo would	oth Ti	MDLs detrin	will b nenta	oe de I to th	velop nis im	ed at	the s	same oan re	time ecrea	(M6) itiona	Low area	disso (H7)	olved . Mo	oxyg	jen, v	ent sta hich r	nay			

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2		H 4 *	H 5	H 6			M 1		M 3	M 4	M 5	M 6		L 2 *	L 3 *	L 4	L 5	L 5 6	. L	_ L		RANKING	TIME TABLE **
French Gulch headwaters-Hassayampa River	Copper	1994	<u>H</u> 1										M 3		M 5	M 6						L 6				High priority	TMDL study ongoing. Completion TMDL in 2004.
10 miles AZ15070103-239	Zinc	1994	<u>H</u> 1										M 3		M 5	M 6						L 6					
	Cadmium	2004											M 3		M 5	M 6				L 4		L 6				Medium priority	
			sign * D stan * D 36 · Alth inte sch sea	nifica Dissolution Dissolution Oissolution Oissolution Dissolution	int thr lved of lved z of sar h the ent re	eat to coppe 80 of cinc w nples cadm each i 2000 ation	r wa 135 vas n (209 nium in on 3-200	dlife was measumeasumeasumeasumeasumeasumeasumeasu	which asure oles (ured a see a see for 50 see [16]); help a see for 50 see fo	may ed as 60%) as hig signif samp	drink high ; gh as icant bling over, the	as 12 2260 threa event	s rem 200 µ) µg/L it to a s (L4) IDL is	ainin g/L (a (alm quation). For expe	g after almost ost 6 c and r effici	time wild tency	onsoc times es the llife u v, all t	on rai s the aqui ses, hree y con	ns or aquat atic ar the ch TMD nplex	winto tic ar nd w nroni Ls w due	er sto nd wi ildlife c sta vill be to th	orms ildlife e star andare e deve e nat	(H1) stan ndaro d wa elope cure o	i: idard) d), and s only ed at t of the	d ex ex ex the s	d exceedances, pose a d exceeded the ceeded standards in ceeded on this same time and a utants (M5) and determine source	
Gila River Centennial Wash-Gillespie	Boron	1992							H 7				M 3		M 5							L 6				Medium priority	Initiate monitoring and investigation in 2006. Initiate TMDL in 2007.
Dam 5 miles AZ15070101-008	Selenium	2004				<u>H</u> <u>4</u>			H 7				M 3		M 5							L 6				High priority	Complete TMDL in 2008.
			neg are Bor	ative a; ho	ely im weve oncer	pacte r, TM ntratio	ed by IDL r	eleva nay b ound	ated : e co may	selen mple: impa	ium (x due ct do	(H4). to la wnsti	Eleva rge n ream	ited s umbe agric	elenion er of pultura	um a ooten al use	ind bo itial s es (H	oron ource 7) bu	may bes and	oe as d pot sent a	ssoci tentia a low	iated al sea v ecol	with asona logic	the e al influ al and	xten uend d hu	r and could be sive agriculture in the ses (M3, M5, L6). man health risk (L5). una Wash (M6).	

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3	M 4		M 6		L 2 *	L 3 *	L 4	. I	L I		L 1	L B	L 9	RANKING	TIME TABLE **
A. Gila River 1. Salt River - Agua Fria River AZ15070101-015 2. Agua Fria River - Waterman Wash AZ15070101-014 3. Waterman Wash - Hassayampa River AZ15070101-010 4. Hassayampa River - Centennial Wash AZ15070101-009 5. Centennial Wash - Gillespie Dam - Rainbow Wash AZ15070101-008 6. Gillespie Dam - Rainbow Wash AZ15070101-007 7. Rainbow Wash - Sand Tank - Painted Rocks Reservoir B. Painted Rocks Reservoir B. Painted Rocks Reservoir AZL15070101-1020A C. Painted Rocks Borrow Pit Lake - See Colorado-Lower Gila Watershed) D. Salt River 23rd Ave WWTP - Gila River AZ15060106B-001D E. Hassayampa River Buckeye Canal - Gila River AZ15070103-001B Total 99 miles and 100 acres	DDT metabolites, toxaphene, chlordane in fish tissue	1988 (EPA 2002)	an TM	id Soi	uthwe	st wil	llow f	lycate of the	hers drain	sight age	ted in and p	this	area	could	d be n	egat	ively	impa	cted	by th	ne pe	esticio	eder des (H4).	This	will	High priority I Yuma clapper rail be a very complex ources to determine	Initiate monitoring and investigations in 2008. Initiate TMDLs in 2009. Complete TMDLs in 2010.
Mineral Creek Devils Canyon-Gila River 10 milses	Copper	1992	H 1										M 3	M 4					<u>L</u> <u>3</u>	L 4							Low priority	Initiate monitoring and investigations in 2006. Initiate TMDLs in 2008. Complete TMDLs in 2009.
AZ15050100-012B	Selenium	2004				H 4									M 5					L 4		L	5				High priority	(Surface water to be in compliance with copper standards by April 2004 according to the signed consent decree.)
			po an ba de du													ave been taken sites on a monthly ained per consent he source of copper												
Queen Creek 1. headwaters-Superior Mine WWTP 9 miles	Copper	2002 (reach A)											M 3		<u>M</u> <u>5</u>					L 4		L	5				Medium priority	Initiate monitoring and investigation in 2004. Initiate TMDL in 2005. Complete TMDL in 2006.
AZ15050100-014A 2. Superior Mine WWTP - Potts Canyon AZ15050100-014B		2004 (reach B)	pro so co	obabi urces pper	lity th and listing	at cor evalu js are	ntam late t bas	inatio he ex ed on	n is r tent o only	elate of cor two	d to s ntami exce	storm natio edano	wate n (L6) ces in	r run). Alt nine	ows (I noff ev though e sam and w	ents n cop ples	(M3) oper is and e	. Mor s toxi	re sar ic to a	mple aqua	es are	e nee	eded d wil	to ide	entify	y		

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3	M 4	M 5	M 6		L 2 *	L 3 *	L 4		L 6	L 7 *	L 8	L 9	RANKING	TIME TABLE **
Turkey Creek unnamed tributary at 34 19 28 / 112 21 28 - Poland	Cadmium	1992	<u>H</u> 1			<u>H</u> 4		<u>H</u>					M 3	M 4	M 5	M 6						L 6				High priority	TMDL study ongoing. Anticipate completing TMDLs in 2004.
Creek 30 miles AZ15070102-036	Copper	1992	<u>H</u> 1			<u>H</u> <u>4</u>		<u>H</u> <u>6</u>					M 3	M 4	M 5	M 6						L 6					
	Lead	2004				<u>H</u> <u>4</u>		<u>H</u> 6					M 3	M 4	M 5	M 6				L 4		L 6					
	Zinc	1992	<u>H</u> 1			<u>H</u> <u>4</u>		<u>H</u> <u>6</u>					M 3	M 4	M 5							L 6					
			free * [* [sar Alti and The The len	quen Disso Disso Disso mples houg d at r e fed e For ach (H	nium, copper, and zinc pose a significant threat to wildlife due to the toxic nature of these pollutants, and the magnitude ency of exceedances as follows (H1): solved cadmium was measured as high as 931 μg/L (8 times the standard), and exceeded standards in 2 of 5 samples isolved copper was measured as high as 13,600 μg/L (200 times the standard) and exceeded standards in 3 of 5 sample solved zinc was measured as high as 158,000 μg/L (more than 400 times the standard) and exceeded standards in 3 or 5 sample solved zinc was measured as high as 158,000 μg/L (more than 400 times the standard) and exceeded standards in 3 or 5 sample solved zinc was measured as high as 158,000 μg/L (more than 400 times the standard) and exceeded standards in 3 or 5 sample solved zinc was measured as high as 158,000 μg/L (more than 400 times the standard).													of 5 samples (40%); of 5 samples (60%); lards in 3 out of 5 in 2 of 7 samples in the water (H4), piles along this e of metals and the pendent. (M3, M5).									
Salt Watershed	•	1																									
Canyon Lake 450 acres AZL15060106A-0250	Low dissolved oxygen	2004							H 7				M 3			<u>M</u> 6						L 6				Medium priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
			ne	eded		entify	sourc	es (L																		More data are anges in	
Christopher Creek headwaters-Tonto Creek 8 miles	Escherichia coli	2004	<u>H</u> 1						<u>H</u> <u>7</u>				M 3			M 6						L 6				High priority	Ongoing TMDL investigation. TMDL to be completed in 2004.
AZ15060105-353			rec	reati		ıse (H	17). E	xcee	danc	es ap	pear	to be	e sea	sona												extensive 6). TMDL is being	
Crescent Lake 157 acres AZL15060101-0420	рН	2002							H 7		M 1					<u>M</u>						L 6				Medium priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
			imp	porta	nt fish	ing a	rea a	nd hi	gh ph	lleve	els m	ay be	e asso	ociat	ed wi	th fis	h kills	(las		rted	fish k). This lake is an . More monitoring	

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3	M 4	M 5	M 6	L 1 *	L 2 *	L 3 *	L 4	L 5	L 6	L 7 *	L	L 9	RANKING	TIME TABLE **
Pinto Creek Ripper Spring - Roosevelt Lake 18 miles	Copper	2004				<u>H</u> <u>4</u>		H 6								M 6						L 6				High priority	Phase II copper TMDL monitoring initiated in 2000 (on upstream reach). Initiate TMDL in 2004. Complete TMDL in 2005.
AZ15060103-018C	Selenium	2004				<u>H</u> <u>4</u>		<u>H</u> <u>6</u>														L 6				High priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
			ele TM	vated IDL c	copp	er or	sele n the	nium segn	(H4) nent	. The abov	re is e this	wide reac	oublio n will	supp	ort fo	or de	velop	ment	of TI	MDL:	s in P	into (Creek	(H6	i). A F	acted due to Phase II copper e data are needed	
Salt River Stewart Mountain Dam -	Low dissolved oxygen	2004							H 7				M 3									L 6				Medium priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008.
Verde River 10 miles AZ15060106A-003	Copper	2004							H 7													L 6				Medium priority	Complete TMDL in 2009.
			rec pro	ceede	ed in 3 onal a	3 of 8 rea (l	1 sar H7). I	npline More	g eve data	nts. I are r	Low o	dissolved to	/ed o denti	xyger fy pot	n may tentia	be s I sou	easo	nal (N of the	/3).T copp	his s per a	ectio	n of t w dis	he Sa solve	alt Ri d ox	iver is ygen	andards were only s an important (L6). The federally ated copper.	
San Pedro-Willcox Pla						Ī	1	1					1		<u> </u>				<u> </u>			1	I				
Mule Gulch (3 reaches) 1. headwaters - above Lavendar Pit 4 miles	Copper (090A, 090B, + 090C)	1990	H 1										M 3		M 5	<u>M</u> <u>6</u>						6		8 8		Medium priority	Ongoing TMDL investigation and monitoring. Site-specific standard development to be completed in 2004. Complete TMDL in 2005.
AZ15080301-090A 2. above Lavender Pit - Bisbee WWTP 1 miles AZ15080301-090B	Cadmium (090C)	2004	H 1										M 3		M 5	<u>M</u> <u>6</u>						L 6		L 8			
3. Bisbee WWTP - Highway 80 bridge 4 miles AZ15080301-090C	pH (090B +090C)	1990	H 1								M 1		M 3		M 5	<u>M</u> 6						L 6		L 8			
	Zinc (090C)	1990	H 1										M 3		M 5	<u>M</u> 6						L 6		L 8			

Surface Water Identification	Pollutant	Year First Listed	H 1 *		H H 3 4								M 4	M 5	M 6	_	L 2 *	L 3 *	L 4		L 6	. !	L I 7 8	L 8	L 9	RANKING	TIME TABLE **
			These load site prior The address the results of th	se TMI ing is a specific specific mining ess coper, zimagnite solved ples (5 solved in M is area sh with	DLs a difficultic starte to the goper ontamine, and decopp 55%) id zinc fulle Galis a	re co lt to condard de time ration ination d low and fre ber was in Mu was dulch; docur Cons	mplex ollect is that is required in the n issurance of pH pequencies as as le Gulas higher than the comption of the comption o	due to according a affective affectives. Treser cy of high a lich; and a cording of the affective affecti	to wanto slop unt for de cted so the ends as 12 3760 ridor for this v	estew pe, in or loa evelop segm ignific excee 2,000 µg/L for M wate	vater of the reconstruction of the reconstru	discha ittent a from t of th is imp hreat es: (185 t imes t n migild be l	rges and e natur ese s leme to wil times the ac rant t hazar	and nephemorally of standanting and the anaturatic araffic.	aturneral ccur ards. and I qua Mig due	ral bad al flows irring d s. I contir human atic and	kgro , and ondificuling h hea d wild fe st cros	ound I d lack tions to de alth (I dlife s anda sing I h met	evels of ra (M6, evelo H1) d stand rd) a	s of cain (L L8). up ad lue to ard) nd ex	copped Co	er (M 8). C TMI nal E toxio exce ded	M3, M8 Currer DL is Best M c natureded stand	5) a ntly n clas dana ure o d sta	ind di ADE ssifie agen of the andar	nt loading. ata for source Q is developing d as a medium nent Practices to ase pollutants and rds in 20 of 36 14 of 36 samples reaches of Mule	
San Pedro River Mexico border - Charleston 28 miles	Copper	2004													M 6						L 6					Medium priority	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.
AZ15050202-008			need	ded to	identi	fy por	ential coordi	sour nation	ces of	of the	copp	er (L6 nal er	i). Th	is TMI (L7).	DL r	may b	e mo	re co	mple	x du	e to p	pote	ntial	soui	rces). More data are in Mexico and er found in this	
San Pedro River Babocomari Creek - Dragoon Wash 17 miles	Escherichia coli	2004	H 1									M 3		M 5	M 6						L 6					Medium priority	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.
AZ15050202-003			wad an a sour	ing in t rea of	the wa Mexic 15, L6	ater (F co, so i, L7).	H1). E deter	xcee	dance	es ma	ay be irce of	relate conta	d to amina	wet wa	eath nay	her ev	ents mple	(M3). ex and	The	drai requ	nage uire s	are ubst	a is re tantia	elati I mo	ively onito	ming or even large and includes ring data to identify chia coli will be	
San Pedro River Dragoon Wash-Tres Alamos 16 miles	Nitrate	1990											M 4	M 5				<u>L</u> <u>3</u>								Low priority	Ongoing Superfund Cleanup remediation activities and effectiveness monitoring in this area.
AZ15050202-002			grou M4).	nd wa	ter int ugh si	o cor urface	nplian e wate	ce wi	th its	stan	dards	and i	s con	nductir	ng m	nonthl	/ mo	nitori	ng of	sev	eral s	sites	along	g th	e Sa	g the surface and n Pedro River (L3, ground water which	Initiate monitoring for TMDL in 2010. Initiate TMDL in 2011. Complete TMDL in 2012.
San Pedro River Aravaipa Creek - Gila River 15 miles	Escherichia coli	2004	H 1									M 3		M 5	M 6						L 6	. 1	L 7			Medium priority	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.
AZ15050203-001	Selenium	2004			<u> </u>	<u> </u>								M 5	M 6						L 6		L L	L B		High priority	
			wad impa inve so d natu	ing in tacted be stigation etermi	the wa by the ons sh ining t ckgrou	ater (l eleva nould the so und c	H1). T ated so help so urce contribu	the fe elenion suppo of cor utions	derall um (H ort TM ntamir s (M5,	ly pro 14). E 1DL o natio , L6,	otecte E. coli develo on may L7, Li	d balo excee opmer / be c	d eag edand nt; ho ompl	le and ces ma wever ex and	d the ay b r, the d wil	e Sout be rela le drair ill requ	nwes ted t age ire s	st will o wet area ubsta	ow fl t wea is re antial	ycato ther lative mon	cher f ever ely la nitorin	foun nts (f irge ng da	d in tl M3). F and in	his a Prio nclu ide	area r mo ides ntify	ming or even may be negatively nitoring and an area of Mexico, sources and to River listed due	

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7	H 8	M 1				M 5	6	L 1 *	L 2 *	L 3 *	L 4	L 5	L 6	L 7 *	L 8	L 9	RANKING	TIME TABLE **
Santa Cruz-Rio Mago	lalena-Rio Sono	yta Wate	rshe	d																							
Lakeside Lake 15 acres AZL15050302-0760	Low dissolved oxygen	2004		<u>H</u> 2					<u>H</u> <u>7</u>				M 3			M 6										High priority	Ongoing monitoring and investigation. TMDL will be completed in 2004.
AZL13030302-0760	Ammonia	2004		<u>H</u> 2					<u>H</u> <u>7</u>				M 3			M 6										High priority	
			to I	histor	ic fish	n kills	at th	is lak	e, an	d the	lake	is an i	mpor	tant u	ırban	recre	eatio	nal ar	ea (H	17). L	ow d	issol	ved o	xyge	n an	mmonia are related d elevated nplex (M5).	
Nogales & East Nogales Wash	Ammonia	2004												M 4		M 6							L 7			Medium priority	Ongoing quarterly monitoring.
Mexico border-Portrero Wash 6 miles AZ15050301-011	Chlorine	1996												M 4		M 6							L 7			Medium priority	Necessity of TMDL will be based on outcome of current international discussions regarding upgrade of treatment facility.
	Copper	2004												M 4		<u>M</u>							L 7			Medium priority	
	Escherichia coli	1998	<u>H</u> 1											M 4		M 6							L 7			High priority	
			to of det	ding corre Noga terior wage	in the ct the les, A ated a overl	wate situa Z and and m	er (H1 etion a d Nog nust b from). Alt are de gales be rep Mexi	hough epend , Son blaced co. T	h amr dent d ora, a d. Chl he so	monia on on and th lorine urce	a, feca going ne Mea is soi loadin	il colif interr xican metim igs ar	orm, nation state nes ac e kno	chlor al ne of So dded own a	ine a gotia onora direc nd th	re a tions a (L7 tly to ne tec	signif betw M4). the s	cant een t Was trean	threathe Ustewa the Ustewa the on ans t	at to h J.S. g ater in the U to cor	overi overi frast J.S. s rect t	n hea nmen ructu side o the pr	alth a t, Ari re in of the roble	and wand was zona Mex bord m ha	ming or even viidlife (H1), actions a, Mexico, the cities ico is badly der due to raw ave been grades.	
Santa Cruz River Mexico border-Nogales WWTP 17 miles	Escherichia coli	2002	<u>H</u> 1					<u>H</u> 6														L 6	L 7			High priority	Stream has been dry due to drought in 2002- 2003. TMDL monitoring will be initiated when flow resumes.
AZ15050301-010			Exceedances of the Escherichia coli standard may represent a significant public health concern if people are swimming or even wading in the water (H1). This area is a corridor for Mexican migrants who may consume this water while crossing the desert, although the water is not protected for this use (H1). The Figured of the Scote Cruz										Hope to initiate TMDL monitoring by 2006. Initiate TMDL by 2007. Complete TMDL by 2008. (Note: Long-term fixed station monitoring site at the border.)														
Sonoita Creek 750 feet below WWTP - Santa Cruz River	Zinc	2004				<u>H</u>																L 6				High priority	Initiate monitoring and investigation 2006. Initiate TMDL in 2007. Complete TMDL in 2008.
14 miles AZ15050301-013C			exc	ceeda know	ances n (L6)	just :); hov	abov vever	e star , a wa	ndard astev	s; the	refor treatr	e, the	y do r lant i:	not re s dire	prese	ent a ipstre	signi eam f	ficant rom t	ecolo he m	ogica onito	al hea oring s	lth c site. I	oncei Disch	rn. So arge	ource mon	14). Zinc e of zinc is nitoring reports from ent actions.	

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7	H 8		M 2	M 3	M 4	M 5	M 6	L 1 *	L 2 *	L 3 *	L 4		6			L 8	L 9	RANKING	TIME TABLE **
Upper Gila Watershed																												
Cave Creek headwaters - South Fork of Cave Creek	Selenium	2004			H 3																	L 6		I	L B		High priority	Initiate monitoring in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.
8 miles AZ15040006-852A					eam i tural s					que V	Vater	H6).	Furth	ner m	onito	oring	is ne	eded	to de	etern	nine :	selen	nium	n sour	rce l	loadi	ing and contribution	Complete TWDL III 2007.
Gila River Skully Creek - San Francisco River	Selenium	2004													M 5							L 6					Medium priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
15 miles AZ15040002-001			Ne	w Me	exico,	addi	ng to	the c	ompl	exity		TMD	L (M	5). Fe	edera												ted by sources in cur in this area	Complete TMDL in 2009.
Gila River Bonita Creek-Yuma Wash 6 miles	Escherichia coli	2004	H 1										M 3		M 5	M 6						L 6					Medium priority	Initiate monitoring and investigation in 2006. Initiate TMDL in 2007. Complete TMDL in 2008.
AZ15040005-022			wa	ceedances of the <i>Escherichia coli</i> standard may represent a significant public health concern if people are swimming ding in the water (H1). Exceedances may be related to wet weather events (M3). The drainage area is nearly 8,000 s determining the source of contamination may be complex and will require substantial monitoring data to identify sour EQ will coordinate this investigation with the other <i>E. coli</i> TMDL downstream (M6).												000 square miles,	Complete 1 MDL in 2006.											
Verde Watershed																												
East Verde River Ellison Creek - American Gulch	Selenium	2004																				L 6		1	L B		Low priority	Ongoing fixed station monitoring. Initiate monitoring and investigation in 2010. Initiate TMDL investigation in 2011
20 miles AZ15060203-022B											neede r in thi																(L6, L8) The nium.	Complete TMDL in 2012.
Verde River Bartlett Dam - Camp Creek 7 miles	Copper	2004				<u>H</u>			H 7												L 5	L 6					High priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
AZ15060203-004	Selenium	2004				<u>H</u>			H 7												L 5	L 6						Complete FMDL in 2009.
			and car of 2	he Federally protected razorback sucker and bald eagle occur in this area. The copper may negatively impact the razor and the selenium may negatively impact the bald eagle (H4). Although exceedances of the chronic copper and selenium and be a significant threat to aquatic life and wildlife, chronic standards were only exceeded in 4 of 80 copper sampling of 23 selenium sampling events (L5). This section of the Salt River is an important recreational area (H7). More data are lentify potential sources of the copper and low dissolved oxygen (L6).													enium standards pling events and 4											
Whitehorse Lake 41 acres AZL15060202-1630	Low dissolved oxygen	2004							H 7							<u>M</u>						L 6					Medium priority	Monitoring and investigation initiated in 2001. Initiate TMDL in 2005. Complete TMDL in 2006.
			be	comp	oletec	by 2	2004.	Low	disso	lved		n ma	y resi	ult in	fish	kills,	and t	this la	ke is	an i							Classification is to . More investigation	

X = Factor present. X = most significant factors. Note that factors that frequently out rank others are shown with an asterisk (*).

High Priority Factors:

H1. Substantial threat to health and safety of humans, aquatic life, or wildlife based on:

- a. Number and type of designated uses impaired,
- b. Type and extent of risk from the impairment to human health or aquatic life,
- c. Pollutant causing the impairment, or
- d. Severity, magnitude, and duration the surface water quality standard was exceeded.

^{**} Date shown is when action is to be initiated. Time table will be adjusted based on availability of flowing water, as Arizona is currently in a drought, and availability of resources to complete TMDLs.

- H2. An new or modified individual NPDES or AZPDES permit is sought for discharge to the impaired water.
- H3. Surface water is listed as a Unique Water or is part of an area classified as a "wilderness area", "wild and scenic river" or other federal or state special protection of the water resource.
- H4. Surface water contains a species listed as "threatened" or "endangered" under the federal Endangered Species Act and the presence of the pollutant in the surface water is likely to jeopardize the listed species.
- H5. A delay in conducting the TMDL could jeopardize ADEQ's ability to gather sufficient credible data necessary to develop the TMDL.
- H6. There is significant public interest and support for development of a TMDL.
- H7. The surface water or segment has important recreational and economic significance to the public.
- H8. The pollutant has been listed for eight years or more (starting with the 2002 listing).

Medium Priority Factors:

- M1. The surface water fails to meet more than one designated use.
- M2. The pollutant exceeds more than one surface water quality standard.
- M3. The exceedance is correlated to seasonal conditions caused by natural events such as storms, weather patterns, or lake turnover.
- M4. Actions in the watershed may result in the surface water attaining applicable water quality standards; however, load reductions may take longer than the next 303(d) listing cycle.
- M5. The type of pollutant and other factors relating to the surface water or segment make the TMDL very complex.
- M6. ADEQ's administrative needs, including TMDL schedule commitments with EPA, permitting needs, or basin priorities that require completion of the TMDL.

Low Priority Factors:

- L1. ADEQ has formally submitted a proposal to delist the surface water or pollutant to EPA. If ADEQ makes the submission outside of listing process cycle, the change in priority ranking will not be effective until EPA approves the report.
- L2. ADEQ has modified or formally proposed a modification to the applicable surface water quality standard or designated use which would result in the surface water no longer being impaired, but the modification has not yet been approved by EPA.
- L3. The surface water is expected to attain surface water quality standards due to any of the following:
 - a. Recently instituted treatment levels or best management practices in the drainage area,
 - b. Discharges or activities related to the impairment have ceased, or
 - c. Actions have been taken and the controls are in place or scheduled for implementation that are likely to bring the surface water back into compliance.
- L4. The surface water is ephemeral or intermittent. ADEQ shall re-prioritize the surface water if the presence of the pollutant in the listed water poses a threat to the health and safety of humans, aquatic life, or wildlife using the water (H1) or the pollutant is contributing to the impairment of a downstream, perennial surface water.
- L5. The pollutant poses a low ecological and human health risk.
- L6. Insufficient data exist to determine the source of the pollutant load.
- L7. The uncertainty of timely coordination with national and international entities concerning international waters makes TMDL development complex.
- L8. Naturally occurring conditions are a major contributor to the impairment.
- L9. No documentation or effective analytical tools exist to develop a TMDL for the surface water with reasonable accuracy.

Table 32. TMDL priority ranking for waters added by EPA

Surface Water Identification	Pollutant	Ranking
Bill Williams Watershed		
Boulder Creek unnamed trib - Wilder Creek AZ15030202-006B	Mercury	Low
Boulder Creek Wilder Creek - Butte Creek AZ15030202-005A	Mercury	Low
Burro Creek Boulder Creek - Black Canyon AZ15030202-004	Mercury	Low
Coors Lake AZL15030204-5000	Mercury in fish tissue	Medium
Colorado - Grand Canyon Watershed (no additions)		
Colorado - Lower Gila Watershed (no additions)		
Little Colorado - San Juan Watershed		
Bear Canyon Lake AZL15020008-0130	рН	Low
Little Colorado River Silver Creek - Carr Wash AZ15020002-004 (see also priority for copper and silver in Table 30 above)	Sediment	Low
Long Lake AZL15020008-0820	Mercury in fish tissue	Medium
Lyman Lake AZL15020001-0850	Mercury in fish tissue	Medium
Soldier's Annex Lake AZL15020008-1430	Mercury in fish tissue	Medium
Soldier's Lake AZL15020008-1440	Mercury in fish tissue	Medium
Salt River Watershed		
Tonto Creek headwaters - unnamed tributary AZ15060105-013A	Dissolved oxygen Nitrogen	Medium
Tonto Creek unnamed tributary - Haigler Creek AZ15060105-013B	Nitrogen	Medium

San Pedro - Willcox Playa - Rio Yaqui Watershed		
Brewery Gulch Wildcat Canyon - Mule Gulch AZ15080301-337	Copper	Medium
Santa Cruz - Rio Magdalena - Rio Sonoyta Waterhsed		
Lakeside Lake AZL15050302-1260 (see also priority for dissolved oxygen and ammonia above)	Nitrogen Phosphorus Chlorophyll	High
Parker Canyon Lake AZL15050301-1040	Mercury in fish tissue	Medium
Rose Canyon Lake AZL15050302-1260	рН	Low
Upper Gila Watershed		
Gila River Bonita Creek - Yuma Wash AZ15040005-002 (see also priority for <i>E. coli</i> in Table 30 above)	Sediment	Low
San Francisco River headwaters - New Mexico border AZ15040004-023	Sediment	Low
Verde Watershed		
Granite Creek headwaters - Willow Creek AZ15060202-059A	Dissolved oxygen	Low
Watson Lake AZL15060202-1590	Nitrogen Dissolved oxygen pH	Medium

A large tailings pile, leftover from the now abandoned Golden Turkey Mine, lies along the stream bank of Turkey Creek. These tailings are considered to be major contributing sources of the cadmium, copper, lead, and zinc that impair this stream. TMDL investigations are ongoing on this reach of Turkey Creek, near Bumble Bee, Arizona.